A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chitosan-based organic/inorganic composite engineered for UV light-controlled smart pH-responsive pesticide through in situ photo-induced generation of acid. | LitMetric

Background: Confined by the volatile property, pesticides are overused and lost significantly during and after spraying, weakening the ecological microbalance among different species of lives. Acid-responsive pesticide is a type of smartly engineered pesticides that contribute to the improvement of utilization efficiency of pesticidal active ingredients in acid-controlled manner, whilst the implementation of acidic solutions may disturb the balance of microenvironment surrounding targeted plants or cause secondary pollution, underscoring the input of acid in a more precise strategy.

Results: Chitosan was chemically modified with a photoacid generator (2-nitrobenzaldehyde) serving as a light-maneuvered acid self-supplier, based on which a smart pesticide was formulated by the integration of attapulgite and organophosphate insecticide chlorpyrifos. Under the irradiation of UV light (365 nm), the modified chitosan would undergo a photolytic reaction to generate an acid and pristine chitosan, which seized the labile protons and facilitated the release of chlorpyrifos based on its inherent pH-responsive flexibility. According to the pesticide release performance, the release rate of chlorpyrifos under UV light (27.2 mW/cm ) reached 78%, significantly higher than those under sunlight (22%, 4.2 mW/cm ) and in the dark (20%) within the same time, consistent with the pH reduction to 5.3 under UV light and no obvious pH change for the two other situations, exhibiting an attractive UV light-controlled, acid-propelled release behavior.

Conclusion: Compared to direct acid spray approach, the proposed in situ photo-induced generation of acid locally on the spots of applied pesticide circumvents the problem of acid contamination to nontargets, demonstrating higher efficiency and biocompatibility for the controlled delivery of acid-responsive pesticides and pest management. © 2022 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.6854DOI Listing

Publication Analysis

Top Keywords

situ photo-induced
8
photo-induced generation
8
generation acid
8
acid
7
pesticide
5
chitosan-based organic/inorganic
4
organic/inorganic composite
4
composite engineered
4
engineered light-controlled
4
light-controlled smart
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!