The multitude of herbicide resistance patterns that have evolved in different weed species is a remarkable example of the rapid adaptation to anthropogenic-driven disturbance. Recently, resistance to glyphosate was identified in multiple populations of in Oregon. We used phenotypic approaches, as well as population genomic and gene expression analyses, to determine whether known mechanisms were responsible for glyphosate resistance and whether resistance phenotypes evolved independently in different populations, and to identify potential loci contributing to resistance. We found no evidence of genetic alterations or expression changes at known target and non-target-site resistance mechanisms of glyphosate. Population genomic analyses indicated that resistant populations tended to have largely distinct ancestry from one another, suggesting that glyphosate resistance did not spread among populations by gene flow. Rather, resistance appears to have evolved independently on different genetic backgrounds. We also detected potential loci associated with the resistance phenotype, some of which encode proteins with potential effects on herbicide metabolism. Our results suggest that Oregon populations of . evolved resistance to glyphosate due to a novel mechanism. Future studies that characterize the gene or genes involved in resistance will be necessary to confirm this conclusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867705 | PMC |
http://dx.doi.org/10.1111/eva.13344 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!