Background: Excessive fat accumulation in adipose tissue depots and organs such as the pancreas and the liver is associated with systemic low-grade chronic inflammation.

Aims: To investigate the association between abdominal, hepatic, and pancreatic fat and the circulating level of inflammatory biomarkers.

Methods: We used data from a subsample of the Study of Health in Pomerania (SHIP-Trend, n = 469). The plasma concentration of 37 inflammatory biomarkers was measured using the Bio-Plex-Pro™-Human-Inflammation-Panel-1. Subcutaneous and visceral adipose tissue (SAT and VAT), as well as hepatic and pancreatic fat, were determined by magnetic resonance imaging. We assessed the associations between fat content and inflammatory biomarkers using multiple linear regression.

Results: Hepatic fat was associated with MMP-2 (β -0.11), PTX3 (β -0.14), and TNFSF12 (β -0.06). Pancreatic fat was associated with sTNFR1 (β 0.15), sTNFR2 (β 0.11), and sCD163 (β 0.13). VAT and SAT were associated with sCD163 (β 0.20, β 0.16), MMP-2 (β -0.12, β -0.10), OSTCN (β -0.16, β -0.10), sTNFR1 (β 0.13, β 0.13), sTNFR2 (β 0.13, β 0.12), TNFSF12 (β -0.11, β -0.08), and TNFSF14 (β 0.21, β 0.20). VAT was additionally associated with TNFSF13B (β 0.08) and CHI3L1 (β 0.07).

Conclusions: Our findings provide new insights into the involvement of hepatic and pancreatic fat on systemic inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dld.2022.02.003DOI Listing

Publication Analysis

Top Keywords

pancreatic fat
16
hepatic pancreatic
12
fat
8
fat systemic
8
systemic inflammation
8
adipose tissue
8
inflammatory biomarkers
8
fat associated
8
associated
5
links ectopic
4

Similar Publications

Identification of a novel heterozygous GPD1 missense variant in a Chinese adult patient with recurrent HTG-AP consuming a high-fat diet and heavy smoking.

BMC Med Genomics

January 2025

Department of Critical Care Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.

Background: Glycerol-3-phosphate dehydrogenase 1 (GPD1) gene defect can cause hypertriglyceridemia (HTG), which usually occurs in infants. The gene defect has rarely been reported in adult HTG patients. In the present study, we described the clinical and functional analyses of a novel GPD1 missense variant in a Chinese adult patient with recurrent hypertriglyceridemia‑related acute pancreatitis (HTG-AP), consuming a high-fat diet and smoking heavily.

View Article and Find Full Text PDF

Context: The obesity epidemic parallels an increasing type 1 diabetes incidence, such that westernized diets, containing high fat, sugar and/or protein, through inducing nutrient-induced islet beta-cell stress, have been proposed as contributing factors. The broad-spectrum neutral amino acid transporter (B0AT1), encoded by Slc6a19, is the major neutral amino acids transporter in intestine and kidney. B0AT1 deficiency in C567Bl/6J mice, causes aminoaciduria, lowers insulinemia and improves glucose tolerance.

View Article and Find Full Text PDF

Purpose: Intra-pancreatic fat deposition (IPFD) is closely associated with the onset and progression of type 2 diabetes mellitus (T2DM). We aimed to develop an accurate and automated method for assessing IPFD on multi-echo Dixon MRI.

Materials And Methods: In this retrospective study, 534 patients from two centers who underwent upper abdomen MRI and completed multi-echo and double-echo Dixon MRI were included.

View Article and Find Full Text PDF

Background: Hyperuricemia and non-alcoholic fatty pancreas disease (NAFPD) are prevalent metabolic diseases, but the relationship between them remains underexplored.

Methods: Eighteen Sprague-Dawley rats were randomly assigned to three groups: normal (CON), high-fat (PO), and high-fat high-uric acid (PH). After 12 weeks, serum uric acid (SUA) and triacylglycerol levels were measured.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a severe digestive disorder, worsened by a high-fat diet (HFD) through inflammation and gut microbiota disruption. Astragalus polysaccharides (APS), known for their anti-inflammatory properties, may alleviate HFD-induced exacerbation of AP by modulating gut microbiota. This study investigates the effect of APS on AP severity under a HFD (HAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!