Intrusion of cement into bone is often considered an indirect indicator for implant stability in cemented joint replacement procedures. However, the influence of cement type (different viscosities/manufacturers) and application time-point on penetration of cements continues to be debated. This study aimed to quantify the effect of cement type and application time-point on the depth of penetration using porcine tibial specimens. Four different bone cements were applied to 60 resected porcine cadaveric tibias at three time-points within the working window (1, 2, and 3 min after dough time). Penetration was measured using computed tomography, utilizing two rigorous methods from the literature and a newly proposed volumetric method. Application time-point had a strong influence on the thickness of the cement layer above the resected tibia (0.25, 0.49, 0.73 mm at the three time-points). No significant variation in penetration depth metrics with cement type or application time-point was found, except percentage area covered by cement at 2 mm depth. This metric was significantly different between 1 and 3-minute time-points (12% and 6% respectively). Time-point of application had a significant influence on thickness of pure cement layer over resected bone. However, penetration depth was not significantly affected by cement type or application time-point. The clinical significance of these findings is that it may be better to apply cement relatively soon after dough time to avoid excessively thick cement mantle between implant and bone. Further, the choice of cement type may have minimal impact on cement penetration, indicating that long standing principles of good cement application maybe more important.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2022.103768 | DOI Listing |
BMC Oral Health
January 2025
Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.
Background: Resin cements often require substrate-specific pretreatment. Recently, universal adhesive systems have been introduced, simplifying procedures by eliminating the need for multiple adhesives and offering options that do not require light curing. This study investigated the bonding performance of universal adhesive systems combined with dual-polymerising resin cements on enamel, dentin, zirconia, lithium disilicate ceramics (LDS), and resin blocks.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Faculty of Dentistry, Department of Endodontics, Ondokuz Mayis University, Samsun, Kurupelit, 55139, Turkey.
Background: The aim was to evaluate the stresses in teeth, with external root resorption (ERR) restored with different materials using finite element analysis (FEA).
Methods: In this study, a Micro-CT scan was conducted on a prepared maxillary central tooth. DICOM-compatible images obtained from the sections were converted into stereolithography format using Ctan software.
JSES Int
November 2024
Department of Orthopaedic Surgery, University of Iowa, Iowa City, IA, USA.
Background: Limitations to using the knee as donor cartilage include cartilage thickness mismatch and donor site morbidity. Using the radial head as donor autograft for capitellar lesions may allow for local graft harvest without distant donor site morbidity. The purpose of this study is to demonstrate the feasibility of performing local osteochondral autograft transfer from the nonarticular cartilaginous rim of the radial head to the capitellum.
View Article and Find Full Text PDFJ Prosthet Dent
January 2025
Associate Professor, Department of Prosthodontics, Dental Branch, Islamic Azad University of Medical Sciences, Tehran, Iran.
Statement Of Problem: The optimal zirconia pretreatment, contingent upon the type of cement used, warrants further research.
Purpose: The purpose of this investigation was to evaluate the influence of various surface pretreatments on the bonding efficacy of cement to zirconia.
Material And Methods: A comprehensive search was conducted across the PubMed, Embase, Scopus, and Web of Science databases for in vitro studies related to bonding with zirconia up to April 2024, supplemented by a manual search.
J Biomater Sci Polym Ed
January 2025
Novel Drug Delivery Systems Laboratory, Faculty of Pharmacy, Medical Sciences/University of Tehran, Tehran, Iran.
Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!