Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Acute hemorrhagic conjunctivitis (AHC) is classified as a class C notifiable infectious disease in China and poses a great threat to public health. This study aimed to investigate the epidemiological trends and hotspots of AHC in mainland China. Sociodemographic factors that could contribute to early warning of AHC were further explored.
Methods: Yearly and monthly incidences of acute hemorrhagic conjunctivitis by date and region from 2004 to 2018 were extracted from the Data Center of China Public Health Science. Joinpoint regression and spatial autocorrelation analysis were performed to explore the epidemiological trends and hotspots of AHC. A generalized linear model was then applied to explore the relationship between sociodemographic factors and AHC incidence.
Results: The average annual AHC incidence was 3.58/100,000 in mainland China. The first-level spatial and temporal aggregation areas were distributed in Guangxi, Hainan, Guangdong, Guizhou, Hunan, Jiangxi, Fujian, Chongqing, Hubei, Anhui, and Zhejiang, with gathering times from 2010/1/1 to 2010/12/31 (RR = 20.13, LLR = 474,522.89, P < 0.01). After 2010, the AHC incidence was stable (APC = - 8.37, 95% CI: - 23.02-9.06). However, it was significantly increased in low- and middle-income provinces (AAPC = 10.65, 95% CI: 0.62-21.68, AAPC = 11.94, 95% CI: 0.62-24.53). The peak of AHC occurred during the August to October period. Children who age 0-3 years are identified as high-risk group with AHC incidence significantly increased (APC = 31.54, 95% CI: 0.27-72.56). Birth rate, population ages 0-14 (% of total population), passenger traffic, and urban population (% of total population) were positively associated with the AHC incidence, while per capita gross domestic product was negatively associated with the AHC incidence.
Conclusion: Overall, the AHC incidence was stable after 2010 in China, but it was significantly increased in low- and middle-income provinces. Regions with a high birth rate, population ages 0-14 (% of the total population), passenger traffic, urban population (% of the total population) and low per capita gross domestic product are at high risk of incidences of AHC. In the future, public health policy and resource priority for AHC in regions with these characteristics are necessary.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889670 | PMC |
http://dx.doi.org/10.1186/s12985-022-01758-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!