Dynamic surface patterns on cells.

J Chem Phys

Physics Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

Published: February 2022

Dynamic pattern formations are commonly observed in multicellular systems, such as cardiac tissue and slime molds, and modeled using reaction-diffusion systems. Recent experiments have revealed dynamic patterns in the concentration profile of various cortical proteins at a much smaller scale, namely, embryos at their single-cell stage. Spiral waves of Rho and F-actin proteins have been reported in Xenopus frog and starfish oocytes [Bement et al., Nat. Cell Biol. 17, 1471 (2015)], while a pulsatile pattern of Rho and myosin proteins has been found in C. elegans embryo [Nishikawa et al., eLife 6, e30537 (2017)]. Here, we propose that these two seemingly distinct dynamic patterns are signatures of a single reaction-diffusion network involving active-Rho, inactive-Rho, actin, and myosin. We show that a small variation in the concentration of other ancillary proteins can give rise to different dynamical states from the same chemical network.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0077311DOI Listing

Publication Analysis

Top Keywords

dynamic patterns
8
dynamic
4
dynamic surface
4
surface patterns
4
patterns cells
4
cells dynamic
4
dynamic pattern
4
pattern formations
4
formations commonly
4
commonly observed
4

Similar Publications

The study of land cover dynamics and the valuation of ecosystem services in coastal cities is pivotal for guiding sustainable urban development and conserving natural resources amidst the unique challenges posed by their geographical and ecological contexts. This study utilizes a 30 m × 30 m land use/cover change (LUCC) dataset to elucidate the spatiotemporal evolution of LUCC and ecosystem service value (ESV) and the trade-offs and synergistic relationships among ecosystem services in the coastal city of Qingdao under three different scenarios over the past 35 years and in the future based on the dual perspective of the past-future by using the equivalent factor approach (EFA), the PLUS model, and Spearman's rank correlation coefficient. The findings reveal a pronounced expansion in built-up areas in Qingdao from 1985 to 2020, with a concomitant significant reduction in cropland, leading to a fluctuation in the total ESV, which initially increased and then declined.

View Article and Find Full Text PDF

Background: Wall shear stress (WSS) plays a crucial role in the natural history of intracranial aneurysms (IA). However, spatial variations among WSS have rarely been utilized to correlate with IAs' natural history. This study aims to establish the feasibility of using spatial patterns of WSS data to predict IAs' rupture status (i.

View Article and Find Full Text PDF

Atomically precise nanoclusters, distinguished by their unique nuclearity- and structure-dependent properties, hold great promise for applications of energy conversion and electronic transport. However, the relationship between ligands and their properties remains a mystery yet to be unrevealed. Here, the influence of ligands on the electronic structures, optical properties, excited-state dynamics, and transport behavior of ReS dimer clusters with different ligands is explored using density functional theory combined with time-domain nonadiabatic molecular dynamic simulations.

View Article and Find Full Text PDF

It is under debate whether intersubjectivity-the capacity to experience a sense of togetherness around an action-is unique to humans. In humans, heavy tickling-a repeated body probing play that causes an automatic response including uncontrollable laughter (gargalesis)-has been linked to the emergence of intersubjectivity as it is aimed at making others laugh (self-generated responses are inhibited), it is often asymmetrical (older to younger subjects), and it elicits agent-dependent responses (pleasant/unpleasant depending on social bond). Intraspecific tickling and the related gargalesis response have been reported in humans, chimpanzees, and anecdotally in other great apes, potentially setting the line between hominids and other anthropoids.

View Article and Find Full Text PDF

Motif-driven dynamics and intermediates during unfolding of multi-domain BphC enzyme.

J Chem Phys

January 2025

Research and Development Center, Beijing Genetech Pharmaceutical Co., Ltd., Beijing 102200, People's Republic of China.

Understanding the folding mechanisms of multi-domain proteins is crucial for gaining insights into protein folding dynamics. The BphC enzyme, a key player in the degradation of polychlorinated biphenyls consists of eight identical subunits, each containing two domains, with each domain comprising two "βαβββ" motifs. In this study, we employed high-temperature molecular dynamics simulations to systematically analyze the unfolding dynamics of a BphC subunit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!