A study investigating the physical properties and use of the SiAl composite Controlled Expansion 7 (CE7) for the packaging of silicon bolometric detectors for millimeter-wave astrophysical applications at cryogenic temperatures is presented. The existing interfaces to such detectors are typically made of either ductile metals or micro-machined silicon. As a composite of Si and Al, we find that CE7 exhibits properties of both in ways that may be advantageous for this application. This exploration of the physical properties of CE7 reveals: (a) superconductivity below a critical transition temperature, T ∼ 1.2 K; (b) a thermal contraction profile much closer to Si than metal substrates; (c) the relatively low thermal conductivity anticipated for a superconductor, which can be improved by Au-plating; and (d) the feasibility of machining mechanical features with tolerances of ∼25 µm. We further discuss the use of CE7 in the cosmology large angular scale surveyor telescope array, which deployed CE7 in several of its detector focal planes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0049526 | DOI Listing |
Sci Rep
January 2025
Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore.
Kaolinite is a single 2D layer of kaolin or metakaolin (MK), common clays that can be characterized as layered 3D materials. We show that because of its chemical composition, kaolinite can be converted into an amorphous 3D material by chemical means. This dimensional transformation is possible due to the large surface to volume ratio and chemical reactivity of kaolinite.
View Article and Find Full Text PDFToxics
December 2024
State Key Laboratory of Coal Resources and Safe Mining & College of Geosciences and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China.
Xuanwei and the neighboring Fuyuan (XF) counties in Yunnan Province have the highest lung cancer incidence rates in China. Previous studies suggest that the nano-minerals released during the combustion of locally sourced "smoky" (bituminous) coal are the primary contributors to these elevated cancer rates. The coal ash generated during combustion predominantly consists of nano-minerals, which can be resuspended into the atmosphere during routine ash-handling activities.
View Article and Find Full Text PDFACS Omega
December 2024
School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China.
Alkaline fusion is a pivotal process influencing the cost of synthesizing zeolite from coal gangue. This study examined the effects of alkaline fusion temperature ( ), treatment duration ( ) and the NaOH/coal gangue weight ratio ( ) on the composition and properties of the products, as well as their adsorption capacities for Cd ( ) and Pb ( ). Response surface methodology (RSM) was employed to analyze the interactions among these factors, and the adsorption mechanisms for Cd and Pb were investigated using X-ray diffraction, scanning electron microscopy-EDS, Fourier transform infrared, X-ray photoelectron spectroscopy, and N adsorption-desorption techniques.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPG-CEMat), Universidade Federal de Campina Grande, Av. Aprígio Veloso-882, Campina Grande 58429-900, PB, Brazil.
The use of industrial residues in civil construction is an exciting alternative to mitigate environmental impacts and promote the circular economy. This work developed new compositions of geopolymer mortars activated by NaOH from fine kaolin residue (RCF), coarse kaolin residue (RCG) and granite (RG). All residues were benefited and characterized by chemical analysis (X-ray fluorescence), mineralogical phases (X-ray diffraction) and granulometry (laser granulometry).
View Article and Find Full Text PDFChemosphere
November 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. Electronic address:
Composite membranes incorporated with high-performance adsorbents are promising for uranium removal. The impact of speciation and ionic strength on uranium adsorption by zeolites was investigated in both static adsorption and composite membrane filtration. Zeolites with high Si/Al ratios exhibited the highest uranium adsorption capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!