A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of the linear oscillation dynamics of Fluidyne engines. | LitMetric

Analysis of the linear oscillation dynamics of Fluidyne engines.

J Acoust Soc Am

Department of Mechanical Systems Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan.

Published: February 2022

A Fluidyne engine is a liquid piston Stirling engine that uses thermally induced self-sustained oscillations of water and air that are filled in a looped tube and tuning column. It presents high potential for use as a low-temperature-difference Stirling engine with a simple structure. This study analyzes the linear oscillation dynamics of the Fluidyne from a thermoacoustic point of view, with particular emphasis on the local specific acoustic impedance of the working gas, which is given by the ratio of the complex amplitudes of the pressure and velocity oscillations in the regenerator of the Fluidyne. The frequency dependence of the specific acoustic impedance indicates that the gas in the regenerator region undergoes a thermodynamic cycle equivalent to the Stirling cycle when the oscillation frequency is equal to the natural oscillation frequency of the U-shaped liquid column in the Fluidyne. The analysis of the natural oscillation modes determined two key parameters for the desired specific acoustic impedance: the tuning column length and the connecting position to the loop. Experimental verification was achieved via measurements of the onset temperature ratio and acoustic field of a prototype Fluidyne engine.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0009571DOI Listing

Publication Analysis

Top Keywords

specific acoustic
12
acoustic impedance
12
linear oscillation
8
oscillation dynamics
8
dynamics fluidyne
8
fluidyne engine
8
stirling engine
8
tuning column
8
oscillation frequency
8
natural oscillation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!