This paper presents two data-driven model identification techniques for dynamical systems with fixed point attractors. Both strategies implement adaptive parameter update rules to limit truncation errors in the inferred dynamical models. The first strategy can be considered an extension of the dynamic mode decomposition with control (DMDc) algorithm. The second strategy uses a reduced order isostable coordinate basis that captures the behavior of the slowest decaying modes of the Koopman operator. The accuracy and robustness of both model identification algorithms is considered in a simple model with dynamics near a Hopf bifurcation. A more complicated model for nonlinear convective flow past an obstacle is also considered. In these examples, the proposed strategies outperform a collection of other commonly used data-driven model identification algorithms including Koopman model predictive control, Galerkin projection, and DMDc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0077447 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!