A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SeqSeg: A sequential method to achieve nasopharyngeal carcinoma segmentation free from background dominance. | LitMetric

Reliable nasopharyngeal carcinoma (NPC) segmentation plays an important role in radiotherapy planning. However, recent deep learning methods fail to achieve satisfactory NPC segmentation in magnetic resonance (MR) images, since NPC is infiltrative and typically has a small or even tiny volume with indistinguishable border, making it indiscernible from tightly connected surrounding tissues from immense and complex backgrounds. To address such background dominance problems, this paper proposes a sequential method (SeqSeg) to achieve accurate NPC segmentation. Specifically, the proposed SeqSeg is devoted to solving the problem at two scales: the instance level and feature level. At the instance level, SeqSeg is forced to focus attention on the tumor and its surrounding tissue through the deep Q-learning (DQL)-based NPC detection model by prelocating the tumor and reducing the scale of the segmentation background. Next, at the feature level, SeqSeg uses high-level semantic features in deeper layers to guide feature learning in shallower layers, thus directing the channel-wise and region-wise attention to mine tumor-related features to perform accurate segmentation. The performance of our proposed method is evaluated by extensive experiments on the large NPC dataset containing 1101 patients. The experimental results demonstrated that the proposed SeqSeg not only outperforms several state-of-the-art methods but also achieves better performance in multi-device and multi-center datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2022.102381DOI Listing

Publication Analysis

Top Keywords

npc segmentation
12
sequential method
8
nasopharyngeal carcinoma
8
background dominance
8
proposed seqseg
8
instance level
8
feature level
8
level seqseg
8
seqseg
6
segmentation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!