A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterising the ground level concentrations of harmful organic and inorganic substances released during major industrial fires, and implications for human health. | LitMetric

Characterising the ground level concentrations of harmful organic and inorganic substances released during major industrial fires, and implications for human health.

Environ Int

Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK. Electronic address:

Published: April 2022

We report on the concentration ranges and combustion source-related emission profiles of organic and inorganic species released during 34 major industrial fires in the UK. These episodic events tend to be acute in nature and demand a rapid public health risk assessment to indicate the likely impact on exposed populations. The objective of this paper is to improve our understanding of the nature, composition and potential health impacts of emissions from major incident fires and so support the risk assessment process. Real world monitoring data was obtained from portable Fourier Transform Infrared (FTIR) monitoring (Gasmet DX-4030/40) carried out as part of the UK's Air Quality in Major Incidents service. The measured substances include carbon monoxide, sulphur dioxide, nitrogen dioxide, ammonia, hydrogen chloride, hydrogen bromide, hydrogen fluoride, hydrogen cyanide, formaldehyde, 1,3-butadiene, benzene, toluene, xylenes, ethyl benzene, acrolein, phosgene, arsine, phosphine and methyl isocyanate. We evaluate the reported concentrations against Acute Exposure Guideline Values (AEGLs) and Emergency Response Planning Guidelines (ERPGs), as well as against UK, EU and WHO short-term ambient guideline values. Most exceedances of AEGL or ERPG guideline values were at levels likely only to cause discomfort to exposed populations (hydrogen cyanide, hydrogen chloride, hydrogen fluoride and formaldehyde), though for several substances the exceedances could have potentially given rise to more serious health effects (acrolein, phosphine, phosgene and methyl isocyanate). In the latter cases, the observed high concentrations are likely to be due to cross-interference from other substances that absorb in the mid-range of the infrared spectrum, particularly when the ground level plume is very concentrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2022.107152DOI Listing

Publication Analysis

Top Keywords

guideline values
12
ground level
8
organic inorganic
8
released major
8
major industrial
8
industrial fires
8
risk assessment
8
exposed populations
8
hydrogen chloride
8
chloride hydrogen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!