Energy shortage and environmental pollution have attracted long-term attention. In this study, CaO were prepared from waste eggshell (EGC), preserved egg shell (PEC), clam shell (CLC) and crab shell (CRC), which were then compared with commercial CaO (CMC) to catalyze microwave-assisted pyrolysis of waste cooking oil (WCO) for enrichment of aromatics in bio-oil. The characterization results indicated that EGC and CLC contained 95.54% and 95.61% CaO respectively, which were higher than that of CMC (95.11%), and the pore properties of EGC were the best. In addition, the effects of CaO type and catalytic mode on pyrolysis were studied. In CaO catalytic pyrolysis, CMC and CLC in-situ catalysis produced more aromatics than ex-situ catalysis, and PEC and CRC were more conducive to aromatics formation in ex-situ condition. EGC was conducive to produce benzene, toluene and xylene (BTX) both in in-situ (19.04%) and ex-situ (20.76%) catalytic pyrolysis. In CaO/HZSM-5 catalysis, the optimal dual catalytic mode for generating monocyclic aromatic hydrocarbons (MAHs) was Mode A (CaO separated from HZSM-5 for ex-situ catalysis), and EGC/HZSM-5 performed well in benzene, toluene and xylene (BTX) production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.154186 | DOI Listing |
Nanomaterials (Basel)
January 2025
Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Division of Physics and Semiconductor, Dongguk University, Seoul 04620, Republic of Korea.
Biomass, though a major energy source, remains underutilized. Biochar from biomass pyrolysis, with its high porosity and surface area, is especially useful as catalyst support, enhancing catalytic activity and reducing electron recombination in photocatalysis. Indonesia, the world's top palm oil producer, generated around 12 million tons of empty fruit bunches (EFBs) in 2023, making EFBs a promising biochar source.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077 Hong Kong. Electronic address:
Thermochemical conversion technologies are emerging as one of the most promising approaches to tackle food waste crisis. However, the existing techniques confront significant challenges in terms of syngas selectivity and catalyst stability. This study introduced a cost-effective Joule heating approach utilizing sequential catalysts composed of treated stainless steel (SS) and biochar to optimize syngas production from food waste.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:
Transition metal-nitrogen-carbon (MNC) based on 3d metal atoms as promising non-precious metal catalysts have been extensively exploited for oxygen reduction reaction (ORR), but MNC with 4f rare earth metals have been largely ignored, most likely due to their large atomic radii that are difficult to coordinate with N dopants using conventional precursors. Herein, atomically dispersed dysprosium-nitrogen-carbon (DyNC) nanosheets were developed via the pyrolysis of anitrogen-containing chelate compound of 2, 4, 6-Tri (2-pyridyl) 1, 3, 5-triazine (TPTZ) ligand with Dy under the assistance of molten NaCl. The as-synthesized DyNC features specific moieties of single Dy atom coordinated by N and O as active sites for ORR, displaying excellent performance.
View Article and Find Full Text PDFTalanta
January 2025
Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China. Electronic address:
Pre-designed core-shell metal-organic frameworks (MOFs@MOFs) with customized functionalities can enhance the material properties compared to conventional single MOFs. The porous carbon composites derived from MOFs@MOFs also have excellent functionality due to the presence of multiple metal/metal oxide nanoparticles. This paper synthesized a novel MOFs@MOFs composite (MIL-101(Fe)@Ni-MOF) with a core-shell structure with MIL-101(Fe) as the core and Ni-MOF as the shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!