Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Advanced functional materials for photocatalytic hydrogen (H) generation using abundant solar energy are the core of new and renewable energy research. In this paper, we report the in-situ deposition of platinum quantum-sized particles (Pt QDs) on bismuth oxybromide (BBr) 3D marigold flowers with exposed (101)/(110) facets (i.e. BBr-Pt) hierarchies prepared by a simple solvo-thermal method acting as a surfactant/structure stabilizer in the presence of CTAB. Synthesized samples were characterized by a series of analytical techniques. Intimate contact as demonstrated by HRTEM, effect of Pt loading in 3D-BiOBr nanostructure on photocatalytic H production and crystal violet (CV) dye degradation rate under white LED light irradiation was studied. This was greatly improved by loading Pt QDs on BBr, the latter showing the highest photocatalytic activity for BBr-2Pt nanostructure, due to the synergistic effect of quantum-sized Pt nanoparticles and exposed ((101) and (110) planes). The BBr-2Pt nanostructure photocatalysts showed highest H generation of 320.69 μmol g, which is 142 folds larger than bare BBr (2.26 μmol g).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.134125 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!