Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/RDv34n2Ab156 | DOI Listing |
Brief Bioinform
November 2024
Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia.
Regulatory genes are critical determinants of cellular responses in development and disease, but standard RNA sequencing (RNA-seq) analysis workflows, such as differential expression analysis, have significant limitations in revealing the regulatory basis of cell identity and function. To address this challenge, we present the TRIAGE R package, a toolkit specifically designed to analyze regulatory elements in both bulk and single-cell RNA-seq datasets. The package is built upon TRIAGE methods, which leverage consortium-level H3K27me3 data to enrich for cell-type-specific regulatory regions.
View Article and Find Full Text PDFBrief Bioinform
November 2024
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Xuanwu District, Nanjing 210096, China.
Spatial transcriptomics technologies have been extensively applied in biological research, enabling the study of transcriptome while preserving the spatial context of tissues. Paired with spatial transcriptomics data, platforms often provide histology and (or) chromatin images, which capture cellular morphology and chromatin organization. Additionally, single-cell RNA sequencing (scRNA-seq) data from matching tissues often accompany spatial data, offering a transcriptome-wide gene expression profile of individual cells.
View Article and Find Full Text PDFNat Commun
January 2025
Bioinformatics and computational systems biology of cancer, Institut Curie, Inserm U900, PSL Research University, Paris, France.
Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK.
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!