One of the major challenges of transfer learning algorithms is the domain drifting problem where the knowledge of source scene is inappropriate for the task of target scene. To solve this problem, a transfer learning algorithm with knowledge division level (KDTL) is proposed to subdivide knowledge of source scene and leverage them with different drifting degrees. The main properties of KDTL are three folds. First, a comparative evaluation mechanism is developed to detect and subdivide the knowledge into three kinds-the ineffective knowledge, the usable knowledge, and the efficient knowledge. Then, the ineffective and usable knowledge can be found to avoid the negative transfer problem. Second, an integrated framework is designed to prune the ineffective knowledge in the elastic layer, reconstruct the usable knowledge in the refined layer, and learn the efficient knowledge in the leveraged layer. Then, the efficient knowledge can be acquired to improve the learning performance. Third, the theoretical analysis of the proposed KDTL is analyzed in different phases. Then, the convergence property, error bound, and computational complexity of KDTL are provided for the successful applications. Finally, the proposed KDTL is tested by several benchmark problems and some real problems. The experimental results demonstrate that this proposed KDTL can achieve significant improvement over some state-of-the-art algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3151646DOI Listing

Publication Analysis

Top Keywords

knowledge
13
transfer learning
12
usable knowledge
12
efficient knowledge
12
proposed kdtl
12
learning algorithm
8
algorithm knowledge
8
knowledge division
8
division level
8
knowledge source
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!