A broad ecosystem of resources, databases, and systems to analyze cancer variations is present in the literature. These are a strategic element in the interpretation of NGS experiments. However, the intrinsic wealth of data from RNA-seq, ChipSeq, and DNA-seq can be fully exploited only with the proper skill and knowledge. In this chapter, we survey relevant literature concerning databases, annotators, and variant prioritization tools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-030-91836-1_10 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115.
This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America.
Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they enable researchers to create accurate models with minimal effort and computational resources. Large scale genomics deep learning models come in two flavors: the first are large language models of DNA sequences trained in a self-supervised fashion, similar to the corresponding natural language models; the second are supervised learning models that leverage large scale genomics datasets from ENCODE and other sources.
View Article and Find Full Text PDFPLoS One
January 2025
School of Humanities, Ningbo University of Finance and Economics, Ningbo, Zhejiang, China.
Lightweight container technology has emerged as a fundamental component of cloud-native computing, with the deployment of containers and the balancing of loads on virtual machines representing significant challenges. This paper presents an optimization strategy for container deployment that consists of two stages: coarse-grained and fine-grained load balancing. In the initial stage, a greedy algorithm is employed for coarse-grained deployment, facilitating the distribution of container services across virtual machines in a balanced manner based on resource requests.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Ocean Engineering, Ningbo University, Ningbo, Zhejiang, China.
Hydrological prediction in ungauged basins often relies on the parameter transplant method, which incurs high labor costs due to its dependence on expert input. To address these issues, we propose a novel hydrological prediction model named STH-Trans, which leverages multiple spatiotemporal views to enhance its predictive capabilities. Firstly, we utilize existing geographic and topographic indicators to identify and select watersheds that exhibit similarities.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
North Carolina State University, Raleigh, North Carolina, United States of America.
Computational models are complex scientific constructs that have become essential for us to better understand the world. Many models are valuable for peers within and beyond disciplinary boundaries. However, there are no widely agreed-upon standards for sharing models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!