Brain tumor surgery requires a delicate tradeoff between complete removal of neoplastic tissue while minimizing loss of brain function. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) have emerged as valuable tools for non-invasive assessment of human brain function and are now used to determine brain regions that should be spared to prevent functional impairment after surgery. However, image analysis requires different software packages, mainly developed for research purposes and often difficult to use in a clinical setting, preventing large-scale diffusion of presurgical mapping. We developed a specialized software able to implement an automatic analysis of multimodal MRI presurgical mapping in a single application and to transfer the results to the neuronavigator. Moreover, the imaging results are integrated in a commercially available wearable device using an optimized mixed-reality approach, automatically anchoring 3-dimensional holograms obtained from MRI with the physical head of the patient. This will allow the surgeon to virtually explore deeper tissue layers highlighting critical brain structures that need to be preserved, while retaining the natural oculo-manual coordination. The enhanced ergonomics of this procedure will significantly improve accuracy and safety of the surgery, with large expected benefits for health care systems and related industrial investors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156583PMC
http://dx.doi.org/10.1007/s10278-022-00609-8DOI Listing

Publication Analysis

Top Keywords

presurgical mapping
12
brain function
8
brain
6
dedicated tool
4
tool presurgical
4
mapping brain
4
brain tumors
4
tumors mixed-reality
4
mixed-reality navigation
4
navigation neurosurgery
4

Similar Publications

In glioma surgery, maximizing the extent of resection while preserving cognitive functions requires an understanding of the unique architecture of the white matter (WM) pathways of the single patient and of their spatial relationship with the tumor. Tractography enables the reconstruction of WM pathways, and bundle segmentation allows the identification of critical connections for functional preservation. This study evaluates the effectiveness of a streamline-based approach for bundle segmentation on a clinical dataset as compared to the traditional ROI-based approach.

View Article and Find Full Text PDF

Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.

View Article and Find Full Text PDF

Evaluation of Different Risk Factors for Metastatic Sentinel Lymph Nodes in Endometrial Cancer.

Cancers (Basel)

December 2024

Department of Surgical Sciences, Division of Gynaecology and Obstetrics, University of Cagliari, 09042 Cagliari, Italy.

: This study investigates which demographic, clinical and pathological factors of women with early-stage presurgical EC could be considered risk factors for the presence of different subtypes of metastases in sentinel lymph nodes (SLNs). : This is a retrospective single-center study that collected data between December 2015 and April 2024. EC patients who underwent total hysterectomy with salpingo-oophorectomy and SLN mapping with indocyanine green (ICG) were recorded.

View Article and Find Full Text PDF

TSPO-PET in pre-surgical evaluations: Correlation of neuroinflammation and SEEG epileptogenicity mapping in drug-resistant focal epilepsy.

Epilepsia

December 2024

Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, Orsay, France.

Objectives: Resective surgery in drug-resistant focal epilepsy (DRFE) requires extensive evaluation to localize the epileptogenic zone (EZ). When non-invasive phase 1 assessments (electroencephalography, EEG; magnetic resonance imaging, MRI; and F-Fluorodeoxyglucose-positron emission tomography, [F]FDG-PET) are inconclusive for EZ localization, invasive investigations such as stereo-EEG (SEEG) are necessary. Epileptogenicity maps (Ems) visualize the EZ using SEEG-identified ictal high-frequency oscillations (iHFOs).

View Article and Find Full Text PDF

Ultrahigh-resolution 7-Tesla anatomic magnetic resonance imaging and diffusion tensor imaging of formalin-fixed human brainstem-cerebellum complex.

Front Hum Neurosci

November 2024

The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.

Introduction: Brain cross-sectional images, tractography, and segmentation are valuable resources for neuroanatomical education and research but are also crucial for neurosurgical planning that may improve outcomes in cerebellar and brainstem interventions. Although ultrahigh-resolution 7-Tesla (7T) magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) reveal such structural brain details in living or fresh unpreserved brain tissue, imaging standard formalin-preserved cadaveric brain specimens often used for neurosurgical anatomic studies has proven difficult. This study sought to develop a practical protocol to provide anatomic information and tractography results of an human brainstem-cerebellum specimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!