PP2A-Cdc55 phosphatase regulates actomyosin ring contraction and septum formation during cytokinesis.

Cell Mol Life Sci

Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.

Published: March 2022

Eukaryotic cells divide and separate all their components after chromosome segregation by a process called cytokinesis to complete cell division. Cytokinesis is highly regulated by the recruitment of the components to the division site and through post-translational modifications such as phosphorylations. The budding yeast mitotic kinases Cdc28-Clb2, Cdc5, and Dbf2-Mob1 phosphorylate several cytokinetic proteins contributing to the regulation of cytokinesis. The PP2A-Cdc55 phosphatase regulates mitosis counteracting Cdk1- and Cdc5-dependent phosphorylation. This prompted us to propose that PP2A-Cdc55 could also be counteracting the mitotic kinases during cytokinesis. Here we show that in the absence of Cdc55, AMR contraction and the primary septum formation occur asymmetrically to one side of the bud neck supporting a role for PP2A-Cdc55 in cytokinesis regulation. In addition, by in vivo and in vitro assays, we show that PP2A-Cdc55 dephosphorylates the chitin synthase II (Chs2 in budding yeast) a component of the Ingression Progression Complexes (IPCs) involved in cytokinesis. Interestingly, the non-phosphorylable version of Chs2 rescues the asymmetric AMR contraction and the defective septa formation observed in cdc55∆ mutant cells. Therefore, timely dephosphorylation of the Chs2 by PP2A-Cdc55 is crucial for proper actomyosin ring contraction. These findings reveal a new mechanism of cytokinesis regulation by the PP2A-Cdc55 phosphatase and extend our knowledge of the involvement of multiple phosphatases during cytokinesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888506PMC
http://dx.doi.org/10.1007/s00018-022-04209-1DOI Listing

Publication Analysis

Top Keywords

pp2a-cdc55 phosphatase
12
cytokinesis
9
phosphatase regulates
8
actomyosin ring
8
ring contraction
8
septum formation
8
budding yeast
8
mitotic kinases
8
amr contraction
8
cytokinesis regulation
8

Similar Publications

Cells coordinate diverse events at anaphase onset, including separase activation, cohesin cleavage, chromosome separation, and spindle reorganization. Regulation of the XMAP215 family member and microtubule polymerase, Stu2, at the metaphase-anaphase transition determines a specific redistribution from kinetochores to spindle microtubules. We show that cells modulate Stu2 kinetochore-microtubule localization by Polo-like kinase1/Cdc5-mediated phosphorylation of T866, near the Stu2 C-terminus, thereby promoting dissociation from the kinetochore Ndc80 complex.

View Article and Find Full Text PDF

PP2A-Cdc55 phosphatase regulates actomyosin ring contraction and septum formation during cytokinesis.

Cell Mol Life Sci

March 2022

Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.

Eukaryotic cells divide and separate all their components after chromosome segregation by a process called cytokinesis to complete cell division. Cytokinesis is highly regulated by the recruitment of the components to the division site and through post-translational modifications such as phosphorylations. The budding yeast mitotic kinases Cdc28-Clb2, Cdc5, and Dbf2-Mob1 phosphorylate several cytokinetic proteins contributing to the regulation of cytokinesis.

View Article and Find Full Text PDF

Cdc6, a subunit of the pre-replicative complex (pre-RC), contains multiple regulatory cyclin-dependent kinase (Cdk1) consensus sites, SP or TP motifs. In , Cdk1 phosphorylates Cdc6-T7 to recruit Cks1, the Cdk1 phospho-adaptor in S phase, for subsequent multisite phosphorylation and protein degradation. Cdc6 accumulates in mitosis and is tightly bound by Clb2 through N-terminal phosphorylation in order to prevent premature origin licensing and degradation.

View Article and Find Full Text PDF

TORC1 signaling modulates Cdk8-dependent GAL gene expression in Saccharomyces cerevisiae.

Genetics

December 2021

Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

Cdk8 of the RNA polymerase II mediator kinase complex regulates gene expression by phosphorylating sequence-specific transcription factors. This function is conserved amongst eukaryotes, but the signals and mechanisms regulating Cdk8 activity and phosphorylation of its substrates are unknown. Full induction of the GAL genes in yeast requires phosphorylation of the transcriptional activator Gal4 by Cdk8.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) promotes anaphase entry after DNA replication stress in budding yeast.

Mol Biol Cell

December 2021

Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300.

DNA replication stress activates the S-phase checkpoint that arrests the cell cycle, but it is poorly understood how cells recover from this arrest. Cyclin-dependent kinase (CDK) and protein phosphatase 2A (PP2A) are key cell cycle regulators, and Cdc55 is a regulatory subunit of PP2A in budding yeast. We found that yeast cells lacking functional PP2A showed slow growth in the presence of hydroxyurea (HU), a DNA synthesis inhibitor, without obvious viability loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!