Meta-analysis of the effects of chemical and microbial preservatives on hay spoilage during storage.

J Anim Sci

Animal and Veterinary Sciences, School of Food and Agriculture, University of Maine, Orono, ME 04469, USA.

Published: March 2022

A meta-analysis was performed to evaluate the effects of chemical (50 articles) and microbial (21 articles) additives on hay preservation during storage. Multilevel linear mixed-effects models were fit with response variables calculated as predicted differences (Δ) between treated and untreated samples. Chemical preservatives were classified into five groups such as propionic acid (PropA), buffered organic acids (BOA), other organic acids (OOA), urea, and anhydrous ammonia (AA). Moderators of the models included preservative class (PC), forage type (FT; grass, legumes, and mixed hay), moisture concentration (MC), and application rate (AR). Dry matter (DM) loss during storage was affected by PC × FT (P = 0.045), PC × AR (P < 0.001), and PC × MC (P = 0.009), relative to the overall effect of preservatives (-0.37%). DM loss in PropA-treated hay was numerically reduced to a greater extent in grasses (-16.2), followed by mixed hay (-1.76), but it increased (+2.2%) in legume hay. Increasing AR of PropA resulted in decrease in DM loss (slope = -1.34). Application of BOA, OOA, PropA, and AA decreased visual relative moldiness by -22.1, -29.4, -45.5, and -12.2 percentage points, respectively (PC; P < 0.001). Sugars were higher in treated grass hay (+1.9) and lower in treated legume hay (-0.8% of DM) relative to their untreated counterparts (P < 0.001). The application of all preservatives resulted in higher crude protein (CP) than untreated hay, particularly urea (+7.92) and AA (+5.66% of DM), but PropA, OOA, and BOA also increased CP by 2.37, 2.04, and 0.73 percentage points, respectively. Additionally, preservative application overall resulted in higher in vitro DM digestibility (+1.9% of DM) relative to the untreated hay (x¯=58.3%), which increased with higher AR (slope = 1.64) and decreased with higher MC (slope = -0.27). Microbial inoculants had small effects on hay spoilage because the overall DM loss effect size was -0.21%. Relative to untreated (x¯=4.63% DM), grass hay preserved more sugars (+1.47) than legumes (+0.33) when an inoculant was applied. In conclusion, organic acid-based preservatives prevent spoilage of hay during storage, but their effectiveness is affected by FT, MC, and AR. Microbial inoculants had minor effects on preservation that were impaired by increased MC. Moreover, legume hay was less responsive to the effects of preservatives than grass hay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8903179PMC
http://dx.doi.org/10.1093/jas/skac023DOI Listing

Publication Analysis

Top Keywords

hay
15
legume hay
12
grass hay
12
relative untreated
12
effects chemical
8
hay spoilage
8
organic acids
8
mixed hay
8
percentage points
8
untreated hay
8

Similar Publications

When agricultural waste are promoted as nutritional sources in rabbit nutrition.

Trop Anim Health Prod

January 2025

Department of Morphology, Federal University of Santa Maria, Av. Roraima - 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brazil.

This study was carried out with the objective of evaluating the use of sweet potato vines (SPV) in replacement of alfalfa hay in diets for growing rabbits. For this, data on: performance, composition and color of the meat, digestive enzymes, intestinal morphology and economic viability were analyzed. Fifty New Zealand White rabbits were used, weaned at 35 days with a body weight of ± 585 g, for 49 days.

View Article and Find Full Text PDF

With the growing bourbon industry in the southeastern U.S. leading to increased production of liquid distillery byproducts, there is a pressing need to explore sustainable uses for whole stillage [containing residual grain (corn, rye, malted barley) and liquid after ethanol separation] in livestock nutrition.

View Article and Find Full Text PDF

Infection Reinforces the Defense Reactions in - Roots to the Detriment of Nodules.

Mol Plant Microbe Interact

January 2025

Université Claude Bernard Lyon 1, Laboratoire d'Écologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France;

, able to establish symbiosis with mutualistic bacteria of the genus , is one of the main species in European riparian environments, where it performs numerous biological and socio-economic functions. However, riparian ecosystems face a growing threat from , a highly aggressive waterborne pathogen causing severe dieback in . To date, the tripartite interaction between the host plant, the symbiont and the pathogen remains unexplored but is critical for understanding how pathogen-induced stress influences the nodule molecular machinery and so on the host-symbiont metabolism.

View Article and Find Full Text PDF

This study aims to measure the effects of different dietary concentrations of triticale hay (TH) on productive performance, carcass characteristics, microbial protein synthesis (MPS), ruminal and blood variables, and antioxidant power in 40 fattening male Gray Shirazi lambs (BW of 33.2 ± 1.1 kg) over 81 days in a completely randomized design (10 animals/diet).

View Article and Find Full Text PDF

Background: The attitudes, perceptions and inherent biases of healthcare professionals (HCPs) have the potential to influence and inform health outcomes of people with intellectual disability. This review aimed to identify what educational interventions have been conducted to improve the attitude, knowledge, and confidence of HCPs in caring for people with intellectual disability.

Method: A systematic literature review was conducted using Medline, ERIC and PsycINFO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!