High-efficiency GaN-based green LEDs are of paramount importance to the development of the monolithic integration of multicolor emitters and full-color high-resolution displays. Here, the InGaN quantum well with gradually varying indium (In) content was proposed for improving the performance of GaN-based green LEDs. The InGaN quantum well with gradually varying In content not only alleviates the quantum-confined Stark effect (QCSE), but also yields a low Auger recombination rate. Consequently, the gradual In content green LEDs exhibited increased light output power (LOP) and reduced efficiency droop as compared to constant In content green LEDs. At 60 A/cm, the LOPs of the constant In content green LEDs and the gradual In content green LEDs were 33.9 mW and 55.2 mW, respectively. At 150 A/cm, the efficiency droops for the constant In content green LEDs and the gradual In content green LEDs were 61% and 37.6%, respectively. This work demonstrates the potential for the gradual In content InGaN to replace constant In content InGaN as quantum wells in LED devices in a technologically and commercially effective manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.452477 | DOI Listing |
Sci Rep
January 2025
Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
This work reports on the preparation process of a double-layer perovskite active layer. The first active layer film, CsKPEAPbIBr, was fabricated using a spin-coating method, while the second active layer, MAPbBr, was deposited using MAPbBr single crystals as the evaporation source. Additionally, doping the PEDOT: PSS hole transport layer with ETA and EDA can enhance the uniformity of the perovskite film and reduce voids, improving charge transport efficiency.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Internal Medicine, Kanai Hospital, 612-12, Yodokizu-cho, Fushimi-ku, Kyoto 613-0911, Japan.
Diabetes is known to reduce blood circulation in capillaries and arterioles; however, no devices can easily measure this on a daily basis. In this study, we developed a tool for measuring finger photoplethysmograms using green light and near-infrared LEDs. Thereafter, photoplethysmography was conducted on 25 inpatients/outpatients with diabetes and 21 adult males and females who had not been diagnosed with or treated for diabetes, hypertension, or cardiovascular disease (control group).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Plant Biotechnology Laboratory, Instrumental Analysis Laboratory, Plant Biochemistry Laboratory, National Technological Institute of Mexico, Tlajomulco de Zuñiga 45640, Mexico.
Green mold caused by is a major post-harvest disease in citrus fruits. Therefore, the search for sustainable and low-environmental-impact alternatives for the management of these fungi is of utmost importance. L.
View Article and Find Full Text PDFDalton Trans
January 2025
Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
Exploring new photoexcited phosphors has attracted attention for improving the performance of white LEDs. Here, an NaBaAlBOCl:Eu phosphor with high color purity (94.11%) has been synthesized.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!