AI Article Synopsis

  • All-fiber Raman lasers can efficiently convert multimode pump beams into high-quality Stokes beams, but the modes of these beams haven't been analyzed before.
  • Using a mode decomposition technique, this study examines the interactions between different modes in multimode graded-index fiber Raman lasers across various operating conditions.
  • Findings show that after reaching the laser threshold, the lower transverse modes of the pump beam are significantly reduced, while the generated Stokes beam primarily contains the fundamental mode, along with diminishing higher-order modes.

Article Abstract

All-fiber Raman lasers have demonstrated their potential for efficient conversion of highly multimode pump beams into high-quality Stokes beams. However, the modal content of these beams has not yet been investigated. In this work, based on a mode decomposition technique, we are able to reveal the details of intermodal interactions in the different operation regimes of continuous wave multimode graded-index fiber Raman lasers. We observed that, above the laser threshold, the residual pump beam is strongly depleted in its transverse modes with principal quantum number below 10. However, the generated Stokes signal beam mainly consists of the fundamental mode, but higher-order modes are also present, albeit with exponentially decreasing population.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.449119DOI Listing

Publication Analysis

Top Keywords

raman lasers
12
stokes beams
8
fiber raman
8
mode-resolved analysis
4
analysis pump
4
pump stokes
4
beams
4
beams ld-pumped
4
ld-pumped grin
4
grin fiber
4

Similar Publications

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.

View Article and Find Full Text PDF

Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.

View Article and Find Full Text PDF

In situ optical analytical spectroscopies offer great geochemical insights due to their capability to resolve the chemical composition of regolith surfaces of rocky celestial bodies. The use of suitable calibration targets improves the precision of mineral determination, which is of critical importance for short-living, low-mobility landers, and enables, in special cases, determination of elemental composition. We investigate the capabilities of three space-relevant optical analytical techniques used for in situ mineralogical analysis, i.

View Article and Find Full Text PDF

In vivo Raman spectroscopy for non-invasive transcutaneous glucose monitoring on animal models and human subjects.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China. Electronic address:

Non-invasive glucose monitoring represents a significant advancement in diabetes management and treatment as non-painful alternatives than finger-sticks tests. After developing an integrated Raman spectral system with a 785 nm laser, this study systematically explores the application of in vivo Raman spectroscopy for quantitative, noninvasive glucose monitoring. In addition to observing characteristic glucose spectral information from a mouse model, a strong spectral correlation was also recognized with the blood glucose concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!