Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The imaging quality of the conventional single-pixel-imaging (SPI) technique seriously degrades at a low sampling rate. To tackle this problem, we propose an efficient sampling method and a high-quality real-time image reconstruction strategy: first, different from the conventional simple circular path sampling strategy or variable density random sampling technique, the proposed method samples the Fourier spectrum using the spectrum distribution of the image, that is, sampling the significant spectrum coefficients first, which will help to improve the image quality at a relevantly low sampling rate; second, to handle the long image reconstruction time caused by the iterative algorithm, the sparsity of the image and the alternating direction optimization strategy are combined to ameliorate the reconstruction process in the image gradient space. Compared with the state-of-the-art techniques, the proposed method significantly improves the imaging quality and achieves real-time reconstruction on the time scale of milliseconds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.448658 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!