Tunable focusing is a desired property in a wide range of optical imaging and sensing technologies but has tended to require bulky components that cannot be integrated on-chip and have slow actuation speeds. Recently, integration of metasurfaces into electrostatic micro-electromechanical system (MEMS) architectures has shown potential to overcome these challenges but has offered limited out-of-plane displacement range while requiring large voltages. We demonstrate for the first time, to the best of our knowledge, a movable metasurface lens actuated by integrated thin-film PZT MEMS, which has the advantage of offering large displacements at low voltages. An out-of-plane displacement of a metasurface in the range of 7.2 m is demonstrated under a voltage application of 23 V. This is roughly twice the displacement at a quarter of the voltage of state of the art electrostatic out-of-plane actuation of metasurfaces. Using this tunability, we demonstrate a varifocal lens doublet with a focal shift of the order of 250 m at the wavelength 1.55 μm. The thin-film PZT MEMS-metasurface is a promising platform for miniaturized varifocal components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.451750 | DOI Listing |
ACS Nano
December 2024
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
Structures such as 3D buckling have been widely used to impart stretchability to devices. However, these structures have limitations when applied to piezoelectric devices due to the uneven distribution of internal strain during deformation. When strains with opposite directions simultaneously affect piezoelectric materials, the electric output can decrease due to cancellation.
View Article and Find Full Text PDFNanophotonics
August 2024
Center for Nano Optics, University of Southern Denmark, Odense, Denmark.
The advancement in material platforms exhibiting strong and robust electro-optic effects is crucial for further progress in developing highly efficient and miniaturized optoelectronic components with low power consumption for modern optical communication systems. In this work, we investigate thin-film lead zirconate titanate (PZT) substrates grown by a chemical solution deposition technique as a potential platform for on-chip plasmonic electro-optic modulators. A high modulation depth (>40 %) is achieved with 15 μm-long electro-optic directional coupler modulators.
View Article and Find Full Text PDFIntegrated electro-optic (EO) modulators are the core components of the optoelectronic information technology, and lithium niobate is currently the most widely used crystalline thin film material; however, finite EO coefficients limit the modulation efficiency of the modulators. In this Letter, we present an integrated EO modulator using a microring resonator on the lead zirconate titanate (PZT) and silicon nitride (SiN) heterogeneous platform. The microwave attenuation is reduced by using low loss tangent and dielectric constant SiN as the electrode substrate, achieving an EO bandwidth of 33 GHz.
View Article and Find Full Text PDFMicrosyst Nanoeng
November 2024
School of Integrated Circuits, Peking University, Beijing, China.
In this study, a controllable mass‒frequency tuning method is presented using the etching of rib structures on a single-crystal PZT membrane. The rib structures were optimized to reduce the membrane mass while maintaining the stiffness; therefore, the center frequency could be increased to improve the low-frequency bandwidth of microphones. Additionally, this methodology could reduce the modulus and improve the sensitivity for the same resonant frequency, which typically indicates the maximum acoustic overload point (AOP).
View Article and Find Full Text PDFAdv Mater
November 2024
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
The mechanical properties at small length scales are not only significant for understanding the intriguing size-dependent behaviors but also critical for device applications. Nanoindentation via atomic force microscopy is widely used for small-scale mechanical testing, yet determining the Young's modulus of quasi-2D films from freestanding force-displacement curve of nanoindentation remains challenging, complicated by both bending and stretching that are highly nonlinear. To overcome these difficulties, a machine learning model is developed based on the back propagation (BP) neural network and finite element training to accurately determine the Young's modulus, pretension, and thickness of freestanding films from nanoindentation force-displacement curves simultaneously, improving the computational efficiency by two orders of magnitude over conventional brute force curve fitting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!