CT-based Radiogenomic Analysis of Clinical Stage I Lung Adenocarcinoma with Histopathologic Features and Oncologic Outcomes.

Radiology

From the Department of Radiology (R.P., J.A.A., P.G., M.S.G.), Druckenmiller Center for Lung Cancer Research (R.P., K.S.T., N.R., M.S.G., D.R.J.), Thoracic Surgery Service (J.G.C., R.C., J.Z., D.R.J.), Biostatistics Service, Department of Epidemiology and Biostatistics (K.W., K.S.T.), and Department of Pathology (N.R.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 7, New York, NY 10065.

Published: June 2022

Background A preoperative predictive model is needed that can be used to identify patients with lung adenocarcinoma (LUAD) who have a higher risk of recurrence or metastasis. Purpose To investigate associations between CT-based radiomic consensus clustering of stage I LUAD and clinical-pathologic features, genomic data, and patient outcomes. Materials and Methods Patients who underwent complete surgical resection for LUAD from April 2014 to December 2017 with preoperative CT and next-generation sequencing data were retrospectively identified. Comprehensive radiomic analysis was performed on preoperative CT images; tumors were classified as solid, ground glass, or mixed. Patients were clustered into groups based on their radiomics features using consensus clustering, and clusters were compared with tumor genomic alterations, histopathologic features, and recurrence-specific survival (Kruskal-Wallis test for continuous data, χ or Fisher exact test for categorical data, and log-rank test for recurrence-specific survival). Cluster analysis was performed on the entire cohort and on the solid, ground-glass, and mixed lesion subgroups. Results In total, 219 patients were included in the study (median age, 68 years; interquartile range, 63-74 years; 150 [68%] women). Four radiomic clusters were identified. Cluster 1 was associated with lepidic, acinar, and papillary subtypes (76 of 90 [84%]); clusters 2 (13 of 50 [26%]) and 4 (13 of 45 [29%]) were associated with solid and micropapillary subtypes ( < .001). The alterations were highest in cluster 1 (38 of 90 [42%], = .004). Clusters 2, 3, and 4 were associated with lymphovascular invasion (19 of 50 [38%], 14 of 34 [41%], and 28 of 45 [62%], respectively; < .001) and tumor spread through air spaces (32 of 50 [64%], 21 of 34 [62%], and 31 of 45 [69%], respectively; < .001). alterations (14 of 45 [31%]; = .006), phosphoinositide 3-kinase pathway alterations (22 of 45 [49%], < .001), and risk of recurrence (log-rank < .001) were highest in cluster 4. Conclusion CT-based radiomic consensus clustering enabled identification of associations between radiomic features and clinicalpathologic and genomic features and outcomes in patients with clinical stage I lung adenocarcinoma. © RSNA, 2022 See also the editorial by Nishino in this issue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131171PMC
http://dx.doi.org/10.1148/radiol.211582DOI Listing

Publication Analysis

Top Keywords

lung adenocarcinoma
12
consensus clustering
12
clinical stage
8
stage lung
8
histopathologic features
8
risk recurrence
8
ct-based radiomic
8
radiomic consensus
8
analysis performed
8
recurrence-specific survival
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!