Potentially Prebiotic Synthesis of Aminoacyl-RNA via a Bridging Phosphoramidate-Ester Intermediate.

J Am Chem Soc

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K.

Published: March 2022

Translation according to the genetic code is made possible by selectivity both in aminoacylation of tRNA and in anticodon/codon recognition. In extant biology, tRNAs are selectively aminoacylated by enzymes using high-energy intermediates, but how this might have been achieved prior to the advent of protein synthesis has been a largely unanswered question in prebiotic chemistry. We have now elucidated a novel, prebiotically plausible stereoselective aminoacyl-RNA synthesis, which starts from RNA-amino acid phosphoramidates and proceeds via phosphoramidate-ester intermediates that subsequently undergo conversion to aminoacyl-esters by mild acid hydrolysis. The chemistry avoids the intermediacy of high-energy mixed carboxy-phosphate anhydrides and is greatly favored under eutectic conditions, which also potentially allow for the requisite pH fluctuation through the variable solubility of CO in solid/liquid water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097472PMC
http://dx.doi.org/10.1021/jacs.2c00772DOI Listing

Publication Analysis

Top Keywords

prebiotic synthesis
4
synthesis aminoacyl-rna
4
aminoacyl-rna bridging
4
bridging phosphoramidate-ester
4
phosphoramidate-ester intermediate
4
intermediate translation
4
translation genetic
4
genetic code
4
code selectivity
4
selectivity aminoacylation
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: Consuming prebiotics demonstrated therapeutic potential against obesity, as illustrated by our previous study on xylooligosaccharide (XOS), revealing that XOS reduced adiposity, diminished systemic inflammation, and restored cognitive function in obese insulin-resistant rats through the gut-brain axis. Fresh bananas at various ripening stages are being transformed into snacks, indicating potential as prebiotic-based treats enriched with fructooligosaccharide and inulin. Despite those findings, there remains a notable gap in the literature concerning the impact of these prebiotic-based snacks on brain inflammation, reactive oxygen species (ROS) production, and cognitive function in high-fat diet (HFD)-induced obese rats.

View Article and Find Full Text PDF

De novo synthesis of hyaluronic acid with tailored molecular weights using a new hyaluronidase SthHL.

Int J Biol Macromol

December 2024

College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:

Hyaluronic acid (HA) exhibits various biological activities and functions, mainly governed by its molecular weight (M). Traditional HA degradation methods encounter challenges such as environmental pollution and high costs. Thus, developing a safe cell factory with an efficient regulation strategy for one-step production of specific M HA has attracted significant research interest.

View Article and Find Full Text PDF

Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review).

Oncol Lett

March 2025

Department of Geriatrics, Harbin 242 Hospital, Harbin, Heilongjiang 150060, P.R. China.

Sarcopenia is an age-related disease that is characterized by a decline in muscle mass and function with significant epidemiological and clinical implications. In recent years, gut microbiota has gained attention as an important regulatory factor in human health. To the best of our knowledge, this is the first study to introduce the definition and epidemiological background of sarcopenia and analyze the potential impact of the gut microbiota on muscle metabolism and growth, including aspects such as gut microbiota metabolites, muscle protein synthesis and energy metabolism.

View Article and Find Full Text PDF

The origin of life on Earth remains one of the most perplexing challenges in biochemistry. While numerous bottom-up experiments under prebiotic conditions have provided valuable insights into the spontaneous chemical genesis of life, there remains a significant gap in the theoretical understanding of the complex reaction processes involved. In this study, we propose a novel approach using a roto-translationally invariant potential (RTIP) formulated with pristine Cartesian coordinates to facilitate the simulation of chemical reactions.

View Article and Find Full Text PDF

Gut Microbiota: An Important Participant in Childhood Obesity.

Adv Nutr

December 2024

Department of Pediatrics, Sichuan Provincial People's Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Pediatrics, School of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China. Electronic address:

Increasing prevalence of childhood obesity has emerged as a critical global public health concern. Recent studies have challenged the previous belief that obesity was solely a result of excessive caloric intake. Alterations in early-life gut microbiota can contribute to childhood obesity through their influence on nutrient absorption and metabolism, initiation of inflammatory responses, and regulation of gut-brain communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!