Protein post-translational modifications play central roles in regulating protein functions. Lysine threonylation is a newly discovered reversible post-translational modification. However, the biological effect of lysine threonylation on proteins remains largely elusive. Here we report a chemical biology approach for site-specific incorporation of ε-threonyllysine into proteins with high efficiency and investigate the biological effect of lysine threonylation on Aurora kinase A. Using this unnatural amino acid mutagenesis approach, we find that threonylation of Lys162 of Aurora kinase A inhibits its kinase activity both and and that the inhibitory effect can be reversed by the deacetylase Sirtuin 3, which removes the threonylated group from the lysine. Additionally, threonylation of Aurora kinase A makes its substrate p53 more stable in the cell. Therefore, our study demonstrates that site-specific lysine threonylation is a powerful method for probing the biological effect of protein threonylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.1c00682 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!