Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A rational design of anion-exchange materials for the selective elimination of radioactive anionic contaminants poses a great challenge. Rather than relying on a size-compatible effect, the combination of a nano-sieve pore, hydrophobic cationic cavity, and soft-acidic open metal sites within one sorbent is an emerging strategy for meeting the requirement. Here, we designed a porous cationic Ag(I) metal-organic framework (MOF), TNU-132, which combined multiple features and showed superior perrhenate/pertechnetate capture selectivity in the presence of a large excess of 300-fold NO and 2000-fold SO. The mechanism of this high selectivity can be well elucidated by the anion exchange experiments of TNU-132 in the CrO/ReO mixture. That is, the separation process underwent two sequential steps, the nano-sieving procedure and then a reconstruction process in the crystalline sorbent. These results were further confirmed by scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS), and/or single-crystal X-ray diffraction (SC-XRD) of oxoanion-loaded materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt04175d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!