Sox9 Promotes Cardiomyocyte Apoptosis After Acute Myocardial Infarction by Promoting miR-223-3p and Inhibiting MEF2C.

Mol Biotechnol

Fuwai Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, No.167 Beilishi Road, Xicheng District, Beijing, 100037, China.

Published: August 2022

Acute myocardial infarction (AMI) is a severe and even fatal cardiovascular disease. The effect of transcription factors on AMI is intensively explored. Our experiment attempts to probe the role of Sox9 in cardiomyocyte apoptosis after AMI. AMI cell model was established in AC16 cells by hypoxia treatment. Cell viability and apoptosis were assessed. Then, the levels of BAX, Bcl-2, Sox9, miR-223-3p, and MEF2C were detected. The binding relation between Sox9 and miR-223-3p and between miR-223-3p and MEF2C was verified. The expression of miR-223-3p was upregulated using the miR-223-3p mimic, and collaborative experiments were conducted as si-Sox9 or si-MEF2C was transfected into cells to inhibit the expression of Sox9 or MEF2C. Sox9 was highly expressed in cardiomyocyte apoptosis after hypoxia, while Sox9 silencing protected hypoxia-treated cardiomyocytes from apoptosis by enhancing cell viability, quenching apoptosis, and reducing activity of caspase-3 and caspase-9. Essentially, Sox9 bound to the miR-223-3p promoter region to upregulate its expression. miR-223-3p targeted MEF2C transcription. miR-223-3p overexpression and MEF2C silencing could counteract the suppressive role of Sox9 silencing in hypoxia-treated cardiomyocyte apoptosis. Sox9 exacerbated hypoxia-induced cardiomyocyte apoptosis by promoting miR-223-3p expression and inhibiting MEF2C transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-022-00471-7DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte apoptosis
20
sox9
10
mir-223-3p
10
apoptosis
8
acute myocardial
8
myocardial infarction
8
promoting mir-223-3p
8
inhibiting mef2c
8
role sox9
8
cell viability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!