Simultaneous optimization of energy and water quality in real-time large-sized water distribution systems is a daunting task for water suppliers. The complexity of energy optimization increases with a large number of pipes, scheduling of several pumps, and adjustments of tanks' water levels. Most of the simultaneous energy and water quality optimization approaches evaluate small (or hypothetical) networks or compromise water quality. In the proposed staged approach, Stage 1 uses a risk-based approach to optimally locate the chlorine boosters in a large distribution system based on residual chlorine failures and the associated consequences in different land uses of the service area. Integrating EPANET and CPLEX software, Stage 2 uses mixed integer goal programming for optimizing the day-ahead pump scheduling. The objective function minimizes the pumping energy cost as well as the undesirable deviations from goal constraints, such as expected water demand. Stage 3 evaluates the combined hydraulics and water quality performances at the network level. The implementation of the proposed approach on a real-time large-sized network of Al-Khobar City in Saudi Arabia, with 44 groundwater wells, 12 reservoirs, 2 storage tanks, 191 mains, 141 junctions, and 17 pumps, illustrated the practicality of the framework. Simulating the network with an optimal pumping schedule and chlorine boosters' locations shows a 40% improvement in water quality performance, desired hydraulics performance with optimal pump scheduling, and an average 20% energy cost reduction compared to the normal (unoptimized) base case scenario.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-022-09874-0 | DOI Listing |
J Phycol
January 2025
Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon, USA.
Sea ice can profoundly influence photosynthetic organisms by altering subsurface irradiance, but it is susceptible to changes in the climate. The patterns and timing of sea ice cover can vary on a monthly to annual timescale in small sub-regions of the Western Antarctic Peninsula (WAP). During the latter part of the 20th century, sea ice coverage significantly decreased in the WAP, a trend that aligns with warming in this area.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion.
View Article and Find Full Text PDFChemosphere
January 2025
DICAR University of Pavia, 27100 Pavia, Italy. Electronic address:
Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilisation of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment.
View Article and Find Full Text PDFEnviron Res
January 2025
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address:
Hydrogen sulfide (HS) is a major air pollutant posing a serious threat to both the environment and public health. In this study, a novel nitrogen-rich biocarbon that effectively removes HS was produced from a mixture of sewage sludge and pine sawdust using melamine as nitrogen source. Compared with pristine biocarbons, nitrogen (N)-doped biocarbons possessed an adjustable porosity, e.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Cyanobacterial blooms represent a significant environmental issue posing widespread threats to global aquatic ecological health. Climate and nutrient enrichment were the most studied factors modulating cyanobacterial blooms in eutrophic lakes. However, in many floodplain lakes, the importance of hydrological variation in driving and predicting cyanobacterial blooms is often overlooked and largely underestimated, which has hampered the effectiveness of lake management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!