Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Non-alcoholic fatty liver disease (NAFLD) is increasing in prevalence and is the most common cause of pediatric chronic liver disease. Objective US-based measures of hepatic steatosis are an unmet clinical need.
Objective: To evaluate the diagnostic performance of quantitative measurement of liver echogenicity (hepatorenal index, or HRI) for hepatic steatosis in a pediatric cohort.
Materials And Methods: We identified pediatric patients (≤18 years old) who underwent both clinically indicated abdominal US and MRI with liver proton-density fat fraction (PDFF) within the 3-month period during the timeframe of July 2015-April 2020 (n=69). Using ImageJ, we drew small circular regions of interest (ROIs) and large freehand ROIs in the liver and right kidney on single longitudinal and transverse images to measure echogenicity (arbitrary units). We calculated four HRIs (liver-to-kidney ratio) as well as liver histogram features. Five pediatric radiologists independently reported the qualitative presence/absence of hepatic steatosis. We used Pearson correlation (r) to assess associations and receiver operating characteristic (ROC) curve analyses to evaluate diagnostic performance. Multivariable logistic regression was used to further assess relationships.
Results: Mean patient age was 11.6 (standard deviation [SD] 4.7, range 0.3-18) years; 27/69 (39.1%) were female. Mean PDFF was 12.5% (SD 13.1%, range 1-48%); 34/69 (49.3%) patients were classified as having hepatic steatosis by MRI (PDFF ≥6%). There were significant, positive correlations between all four US HRI methods and PDFF (r=0.51-0.61); longitudinal freehand ROIs exhibited the strongest correlation (r=0.61; P<0.0001). Longitudinal freehand ROI HRI had moderate diagnostic performance for the binary presence of steatosis (area under the curve [AUC]=0.80, P<0.0001), with an optimal cut-off value >1.75 (sensitivity=70.6%, specificity=77.1%). Radiologists' sensitivity for detecting hepatic steatosis ranged from 79.4% to 97.1%, and specificity ranged from 91.2% to 100%. Significant multivariable predictors of PDFF ≥6% included HRI (P=0.002; odds ratio [OR]=34.2), body mass index (BMI) percentile (P=0.005; OR=1.06), and liver gray-scale echogenicity standard deviation (P=0.02; OR=0.79) (receiver operating characteristic AUC = 0.92).
Conclusion: Quantitative US HRI has moderate diagnostic performance for detecting liver fat in children and positively correlates with MRI PDFF. Incorporation of BMI-percentile and gray-scale echogenicity standard deviation improved diagnostic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00247-022-05313-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!