Full-thickness osteochondral defects lack the capability to self-repair owing to their complicated hierarchical structure. At present, clinical treatments including microfracture have shown some efficacy; however, the newborn tissue exhibits some drawbacks, such as fibrocartilage formation and insufficient mechanical properties, eventually leading to osteoarthritis. Moreover, cartilage and bone tissues have different biological characteristics. Therefore, the simultaneous repair of full-thickness osteochondral defects is highly challenging. To achieve optimal repair, we constructed a bionic biphasic composite scaffold with on-demand osteochondrogenic factors. Kartogenin and extractive mesenchymal stem cells were introduced into a mPEG--poly(L-valine) thermogel set as the upper layer to accelerate cartilage repair. A poly(lactide--glycolide)/hydroxyapatite porous scaffold was immobilized with bone morphogenetic protein-2 as the bottom layer to facilitate subchondral repair. The intermediate interface, being a combination of the two layers, was expected to reconstruct the calcification zone. Gross evaluation, micro-computed tomography, and magnetic resonance imaging indicated that at 6 months after implantation, the scaffold encapsulating mesenchymal stem cells and osteochondrogenic factors had a better effect compared with other groups. More importantly, the composition of the new cartilage and bone was confirmed by western blotting, H&E staining, immunohistochemistry, and immunofluorescence. Taken together, this bionic composite scaffold with osteochondrogenic factors offers a promising option for the repair of full-thickness osteochondral defects.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2bm00103aDOI Listing

Publication Analysis

Top Keywords

osteochondrogenic factors
16
full-thickness osteochondral
16
osteochondral defects
16
bionic biphasic
8
biphasic composite
8
cartilage bone
8
repair full-thickness
8
composite scaffold
8
mesenchymal stem
8
stem cells
8

Similar Publications

Vascular calcification (VC) is a biological phenomenon characterized by an accumulation of calcium and phosphate deposits within the walls of blood vessels causing the loss of elasticity of the arterial walls. VC plays a crucial role in the incidence and progression of chronic kidney disease (CKD), leading to a significant increase in cardiovascular mortality in these patients. Different conditions such as age, sex, dyslipidemia, diabetes, and hypertension are the main risk factors in patients affected by chronic kidney disease.

View Article and Find Full Text PDF

Zinc Ameliorates High Pi and Ca-Mediated Osteogenic Differentiation of Mesenchymal Stem Cells.

Nutrients

November 2024

MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.

Zinc is the second most abundant trace element in the human body, stored mainly in the bones. Zinc is required for bone growth and homeostasis and is also a crucial cofactor for numerous proteins that play key roles in maintaining microstructural integrity and bone remodeling. Bone marrow-derived mesenchymal stem cells (BMSCs) are multipotent progenitors found in the bone marrow stroma and can differentiate along multiple lineage pathways.

View Article and Find Full Text PDF

Background: Polyploid giant cancer cells (PGCCs) have properties of cancer stem cells (CSCs). PGCCs with daughter cells (PDCs) undergo epithelial-mesenchymal transition and show enhanced cellular plasticity. This study aimed to elucidate the mechanisms underlying the osteo/chondrogenic-like differentiation of PDCs, which may be exploited therapeutically by transdifferentiation into post-mitotic and functional cells.

View Article and Find Full Text PDF

Osteochondral lesions may be due to trauma or congenital conditions. In both cases, therapy is limited because of the difficulty of tissue repair. Tissue engineering is a promising approach that relies on designed scaffolds with variable mechanical attributes to favor cell attachment and differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • - Vascular calcification in chronic kidney disease (CKD) patients increases cardiovascular risks, and the drug Daprodustat (DPD) accelerates this calcification while treating anemia associated with CKD by activating the HIF-1 pathway.
  • - DPD treatment enhances markers indicating hypoxia, ER stress, and osteogenic differentiation in both CKD mice and human vascular cells, leading to increased calcification in aorta and kidneys.
  • - The study reveals that DPD induces ER stress via the ATF4 pathway, with the potential to mitigate its pro-calcification effects by targeting ATF4 in therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!