Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The scientific community is just beginning to uncover the potential long-term effects of COVID-19, and one way to start gathering information is by examining the present discourse on the topic. The conversation about long COVID-19 on Twitter provides insight into related public perception and personal experiences.
Objective: The aim of this study was to investigate the #longCOVID and #longhaulers conversations on Twitter by examining the combined effects of topic discussion and social network analysis for discovery on long COVID-19.
Methods: A multipronged approach was used to analyze data (N=2500 records from Twitter) about long COVID-19 and from people experiencing long COVID-19. A text analysis was performed by both human coders and Netlytic, a cloud-based text and social networks analyzer. The social network analysis generated Name and Chain networks that showed connections and interactions between Twitter users.
Results: Among the 2010 tweets about long COVID-19 and 490 tweets by COVID-19 long haulers, 30,923 and 7817 unique words were found, respectively. For both conversation types, "#longcovid" and "covid" were the most frequently mentioned words; however, through visually inspecting the data, words relevant to having long COVID-19 (ie, symptoms, fatigue, pain) were more prominent in tweets by COVID-19 long haulers. When discussing long COVID-19, the most prominent frames were "support" (1090/1931, 56.45%) and "research" (435/1931, 22.53%). In COVID-19 long haulers conversations, "symptoms" (297/483, 61.5%) and "building a community" (152/483, 31.5%) were the most prominent frames. The social network analysis revealed that for both tweets about long COVID-19 and tweets by COVID-19 long haulers, networks are highly decentralized, fragmented, and loosely connected.
Conclusions: This study provides a glimpse into the ways long COVID-19 is framed by social network users. Understanding these perspectives may help generate future patient-centered research questions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867393 | PMC |
http://dx.doi.org/10.2196/31259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!