Herbal drugs are safe and show significantly fewer side effects than their synthetic counterparts. Curcumin (an active ingredient primarily found in turmeric) shows therapeutic properties, but its commercial use as a medication is unrealized, because of doubts about its potency. The literature reveals that electrospun nanofibers show simplicity, efficiency, cost, and reproducibility compared to other fabricating techniques. Forcespinning is a new technique that minimizes limitations and provides additional advantages to electrospinning. Polymer-based nanofibers-whose advantages lie in stability, solubility, and drug storage-overcome problems related to drug delivery, like instability and hydrophobicity. Curcumin-loaded polymer nanofibers show potency in healing diabetic wounds in vitro and in vivo. The release profiles, cell viability, and proliferation assays substantiate their efficacy in bone tissue repair and drug delivery against lung, breast, colorectal, squamous, glioma, and endometrial cancer cells. This review mainly discusses how polymer nanofibers interact with curcumin and its medical efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867693 | PMC |
http://dx.doi.org/10.1007/s11837-022-05180-9 | DOI Listing |
J Biomater Sci Polym Ed
January 2025
Department of Microbiology, University of Central Punjab, Lahore, Pakistan.
Infected burn wounds present significant clinical challenges due to delayed healing and risk of infection, necessitating advanced treatments that offer both antimicrobial and regenerative properties. This study aimed to develop and evaluate multifunctional electrospun nanofiber films incorporating rhamnose (as an angiogenic agent) and therapeutic agents, namely fluticasone, mupirocin, ciprofloxacin, and silver sulfadiazine, for the enhanced healing of infected burn wounds. Nanofibers containing rhamnose, polyacrylonitrile, polyvinyl alcohol and therapeutic agents were fabricated electrospinning.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemical Engineering, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia, Av. Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
This study explores the characterization and application of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) synthesized from organic residues, specifically milk and molasses. Six PHBV samples with varying 3-hydroxyvalerate (3HV) content (7%, 15%, and 32%) were analyzed to assess how 3HV composition influences their properties. Comprehensive characterization techniques, including NMR, FTIR, XRD, DSC, TGA, and tensile-stress test, were used to evaluate the molecular structure, thermal properties, crystalline structure, and mechanical behavior.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania.
With the growing interest in nanofibers and the urgent need to address environmental concerns associated with plastic waste, there is an increasing focus on using recycled materials to develop advanced healthcare solutions. This study explores the potential of recycled poly(ethylene terephthalate) (PET) nanofibers, functionalized with copper-enhanced alginate, for applications in wound dressings. Nanofibers with desirable antimicrobial properties were developed using chemical recycling and electrospinning techniques, offering a sustainable and effective option for managing wound infections and promoting healing.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Pharmacy, Vasile Goldis Western University of Arad, 310130 Arad, Romania.
Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Materials Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Bangkok 10140, Thailand.
Methyl gallate (MG), a natural phenolic compound, exhibits in vitro synergistic activity with amoxicillin (Amox) against methicillin-resistant (MRSA), a global health concern. This study developed electrospun nanofibers incorporating MG and Amox into a poly(vinyl alcohol) (PVA)/chitosan (CS) blend to target both methicillin-susceptible (MSSA) and MRSA. The formulation was optimized, and the impact of acetic acid on antibacterial activity was evaluated using agar disc diffusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!