Empathy, the understanding of the emotional state of others, can be examined across species using the Perception Action Model, where shared affect promotes an action by "Observers" to aid a distressed "Target". The anterior insula (AI) has garnered interest in empathic behavior due to its role integrating sensory and emotional information of self and other. In the following studies, the AI was inhibited pharmacologically and chemogenetically during targeted helping. We demonstrate the insula is active during, and is necessary for the maintenance of, targeted helping. Analysis of ultrasonic vocalizations revealed distress calls from Targets increased when Observers' helping was attenuated due to insula inhibition. Targets' elevated distress was directly correlated to Observers' diminished helping behavior, suggesting emotional transfer between Observer and Target is blunted following Observer AI inhibition. Finally, the AI may selectively blunt targeted helping, as social exploration did not change in a social reward place conditioning task. These studies help further establish the anterior insula as a critical node in the empathic brain during targeted helping, even in the absence of direct social contact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885669 | PMC |
http://dx.doi.org/10.1038/s41598-022-07365-3 | DOI Listing |
Stem Cells Transl Med
December 2024
NEI/OSCTRS/OGVFB, Bethesda, MD, United States.
Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.
View Article and Find Full Text PDFFunct Integr Genomics
December 2024
Department of Biology, Debre Markos University, Debre Markos, Ethiopia.
The barley stripe mosaic virus (BSMV) uses its genomic RNA components (alpha, beta, and gamma) as an efficient method for studying gene functions. It is a newly developed method that utilizes gene transcript suppression to determine the role of plant genes. BSMV derived from virus induced gene silencing (VIGS) is capable of infecting various key farming crops like barley, wheat, rice, corn, and oats.
View Article and Find Full Text PDFJ Pers Med
December 2024
Eye Unit, "Luigi Curto" Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy.
Currently, common treatment approaches for neoplastic diseases include surgery, radiation, and/or anticancer drugs (chemotherapy, hormone medications, and targeted therapies). In particular, anticancer medicines destroy cancerous cells by blocking certain pathways that aid in the disease's initiation and progression. These pharmaceutical drugs' capacity to inhibit malignant cells has made them indispensable in the treatment of neoplastic disorders.
View Article and Find Full Text PDFJ Gynecol Oncol
November 2024
The 3th Ward of Radiotherapy Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
Objective: To explore the application value of using 3-dimensional (3D) printing (3DP) technology to create individualized vaginal molds for brachytherapy (BT) in high-dose-rate 3D cervical cancer through reverse engineering of needle placement.
Methods: Prospectively, 11 patients with cervical cancer were treated with 3DP-intracavitary/interstitial (IC/IS) BT using 3DP to create individualized vaginal molds. All patients were performed BT after completion of external beam radiotherapy (EBRT).
Front Insect Sci
December 2024
Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea.
Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!