Atomic structure evolution related to the Invar effect in Fe-based bulk metallic glasses.

Nat Commun

Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.

Published: February 2022

The Invar effect is universally observed in Fe-based bulk metallic glasses. However, there is limited understanding on how this effect manifests at the atomic scale. Here, we use in-situ synchrotron-based high-energy X-ray diffraction to study the structural transformations of (FeBY)Nb and (FeBY)Mo bulk metallic glasses around the Curie temperature to understand the Invar effect they exhibit. The first two diffraction peaks shift in accordance with the macroscopically measured thermal expansion, which reveals the Invar effect. Additionally, the nearest-neighbor Fe-Fe pair distance correlates well with the macroscopic thermal expansion. In-situ X-ray diffraction is thus able to elucidate the Invar effect in Fe-based metallic glasses at the atomic scale. Here, we find that the Invar effect is not just a macroscopic effect but has a clear atomistic equivalent in the average Fe-Fe pair distance and also shows itself in higher-order atomic shells composed of multiple atom species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885758PMC
http://dx.doi.org/10.1038/s41467-022-28650-9DOI Listing

Publication Analysis

Top Keywords

metallic glasses
16
bulk metallic
12
invar fe-based
8
fe-based bulk
8
atomic scale
8
x-ray diffraction
8
thermal expansion
8
fe-fe pair
8
pair distance
8
invar
6

Similar Publications

Synthetic bone transplantation has emerged in recent years as a highly promising strategy to address the major clinical challenge of bone tissue defects. In this field, bioactive glasses (BGs) have been widely recognized as a viable alternative to traditional bone substitutes due to their unique advantages, including favorable biocompatibility, pronounced bioactivity, excellent biodegradability, and superior osseointegration properties. This article begins with a comprehensive overview of the development and success of BGs in bone tissue engineering, and then focuses on their composite reinforcement systems with biodegradable metals, calcium-phosphorus (Ca-P)-based bioceramics, and biodegradable medical polymers, respectively.

View Article and Find Full Text PDF

The synthesis of an iron tailings-based geopolymer with synergistic electromagnetic wave consumption property.

Environ Res

January 2025

School of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian, 350108, China; Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou University, Fuzhou, Fujian 350108, China.

In this study, combination of wave absorption materials with different loss mechanisms are added into iron ore tailings-blast furnace slag (IOT-BFS) based geopolymers. The employed materials are hollow glass microsphere (HGM), carbon nanotubes (CNT) and carbonyl iron powder (CIP). Microstructures of the geopolymers are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and concrete porous structure analyzer.

View Article and Find Full Text PDF

Background: Conservative dentistry introduced modern restoration designs, contributing to the greater use of partial-coverage ceramic restorations. New strong bondable ceramic materials made fabricating partial coverage ceramic restorations easier to restore the badly destructed teeth.

Aim Of The Study: This study investigated the impact of three distinct overlay preparation designs on the marginal fit (both before and after thermal aging) and the fracture resistance of overlay restorations fabricated using advanced zirconia-reinforced lithium disilicate (ALD) CAD/CAM glass-ceramic blocks.

View Article and Find Full Text PDF

Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).

View Article and Find Full Text PDF

Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values ​​has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.

Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!