3',4',7-Trihydroxyflavone Downregulates NO Production in LPS- or IFN-γ-Activated MG6 Microglial Cells by Attenuating the JNK-STAT1 Pathway.

Biol Pharm Bull

Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University.

Published: April 2022

Neuroinflammation induced by activated microglia is a key feature of neurodegenerative diseases such as Alzheimer's disease. The natural flavonoid 3',4',7-trihydroxyflavone protects nerve cells from oxidative stress-mediated apoptosis and inhibits the aggregation of amyloid β protein in vitro. However, little is known about its effects on microglial activation. In this study, we investigated the effects of 3',4',7-trihydroxyflavone on lipopolysaccharide (LPS)- or interferon-γ (IFN-γ)-induced neuroinflammatory responses in MG6 microglial cells. 3',4',7-Trihydroxyflavone inhibited LPS- or IFN-γ-mediated nitric oxide (NO) generation and the upregulation of inducible NO synthase (iNOS) in MG6 cells. 3',4',7-Trihydroxyflavone also suppressed LPS- or IFN-γ-mediated phosphorylation of signal transducer and activator of transcription 1 (STAT1), which is crucial for iNOS expression. LPS stimulation induced rapid phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase (ERK) in MG6 cells. 3',4',7-Trihydroxyflavone significantly inhibited the LPS-mediated phosphorylation of JNK, but not that of ERK and p38 MAPK. The inhibitory effect of 3',4',7-trihydroxyflavone on NO generation was mimicked by pharmacological inhibition of the JNK signaling pathway with SP600125. Furthermore, SP600125 significantly inhibited LPS- or IFN-γ-mediated phosphorylation of STAT1 in MG6 cells. These results suggest that 3',4',7-trihydroxyflavone exerts anti-neuroinflammatory effects via inhibition of the JNK-STAT1 pathway in microglia.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b21-00841DOI Listing

Publication Analysis

Top Keywords

cells 3'4'7-trihydroxyflavone
16
lps- ifn-γ-mediated
12
mg6 cells
12
3'4'7-trihydroxyflavone
8
mg6 microglial
8
microglial cells
8
jnk-stat1 pathway
8
3'4'7-trihydroxyflavone inhibited
8
inhibited lps-
8
ifn-γ-mediated phosphorylation
8

Similar Publications

Natural flavone and isoflavone analogs such as 3',4',7-trihydroxyflavone (), 3',4',7-trihydroxyisoflavone (), and calycosin () possess significant neuroprotective activity in Alzheimer's and Parkinson's disease. This study highlights the in vitro human monoamine oxidase (hMAO) inhibitory potential and functional effect of those natural flavonoids at dopamine and serotonin receptors for their possible role in neuroprotection. In vitro hMAO inhibition and enzyme kinetics studies were performed using a chemiluminescent assay.

View Article and Find Full Text PDF

The JiGuCao capsule formula (JCF) has demonstrated promising curative effects in treating chronic hepatitis B (CHB) in clinical trials. Here, we aimed to investigate JCF's function and mechanism in diseases related to the hepatitis B virus (HBV). We used mass spectrometry (MS) to identify the active metabolites of JCF and established the HBV replication mouse model by hydrodynamically injecting HBV replication plasmids into the mice's tail vein.

View Article and Find Full Text PDF

Neuroinflammation induced by activated microglia is a key feature of neurodegenerative diseases such as Alzheimer's disease. The natural flavonoid 3',4',7-trihydroxyflavone protects nerve cells from oxidative stress-mediated apoptosis and inhibits the aggregation of amyloid β protein in vitro. However, little is known about its effects on microglial activation.

View Article and Find Full Text PDF

Osteoclasts, which are specialized bone multinuclear cells, are responsible for bone lytic diseases such as osteoporosis. 3',4',7,8-tetrahydroxyflavone is a flavonoid from Acacia confusa. In the present study, we found that 3',4',7,8-tetrahydroxyflavone markedly inhibited receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastic differentiation from mouse bone marrow-derived macrophages (BMMs).

View Article and Find Full Text PDF

Relationship between Antioxidant and Anticancer Activity of Trihydroxyflavones.

Molecules

December 2017

Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania.

Unlabelled: Plant polyphenols have been highlighted not only as chemopreventive, but also as potential anticancer substances. Flavones are a subclass of natural flavonoids reported to have an antioxidant and anticancer activity. The aim of our study was to evaluate antioxidant and anticancer activity of seventeen trihydroxyflavone derivatives, including apigenin (API) and baicalein (BCL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!