The pharmacological effects and therapeutic targets of naringin (NG) against osteoporosis (OP) is still unclear. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) based non-targeted metabonomics has been used to explore the differentiated metabolites and potential biological pathways of NG in the pathological process of OP. Using network pharmacology analysis, the key protein targets of NG against OP were also screened. By the metabonomics analysis, a total of 33 differentiated metabolites in serum were discovered, of which 21 were significantly regulated by NG treatment. These metabolites majorly associated with to amino acid metabolism,polyunsaturated fatty acid metabolism, pyruvate metabolism and glycerophospholipidmetabolism. Using the network pharmacology prediction analysis, NG was related to the expression changes of 13 important protein targets. It showed that high-throughput metabonomics strategy integrated with network pharmacology could insight into molecular mechanisms of natural products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2022.123170DOI Listing

Publication Analysis

Top Keywords

network pharmacology
12
naringin osteoporosis
8
differentiated metabolites
8
protein targets
8
liquid chromatography-mass
4
chromatography-mass spectrometry
4
spectrometry method
4
method discovering
4
discovering metabolic
4
metabolic markers
4

Similar Publications

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.

View Article and Find Full Text PDF

Background: Periodontitis (PD) is a common chronic inflammatory oral disease that severely affects patients' quality of life. Fisetin has been shown to possess antioxidant and anti-inflammatory properties in various biological systems.

Methods: This study first identified the molecular targets of fisetin for PD through network pharmacology analysis.

View Article and Find Full Text PDF

P2Y12 receptor-independent antiplatelet mechanism of cryptotanshinone: network pharmacology and experimental validation of multi-target signaling pathways.

J Ethnopharmacol

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug RandD, Guizhou Medical University, Guiyang, 561113, China. Electronic address:

Ethnopharmacological Relevance: Cryptotanshinone serves as the principal bioactive constituent of Salvia miltiorrhiza Bunge, possesses a wide range of pharmacological activities. Salvia miltiorrhiza Bunge, a long-standing therapeutic agent in traditional Chinese medicine (TCM) practice, is renowned for its efficacy in enhancing blood circulation and alleviating blood stasis and infarction, thereby treating cardiovascular and cerebrovascular diseases.

Aim Of The Study: Platelet activation, when excessive or aberrant, poses a significant risk, catalyzing the onset of various thrombotic disorders.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Yi-Shen-Hua-Shi granules (YSHSG) have been shown to improve kidney function in various renal disorders, which are characterized by the sudden decline and impairment of kidney function.

Aim Of The Study: To investigate the precise mechanisms and targets of YSHSG in combating sepsis-induced AKI.

Materials And Methods: Through network pharmacology, the active ingredients, main target proteins, and related signaling pathways of YSHSG in the treatment of sepsis-induced AKI were predicted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!