The seeds of Torreya grandis are necessary to go through a ripening process, which eventually leads to nutrition conversion and the production of edible nuts. However, the molecular basis of nutrition conversion remains unclear. Here, transcriptome sequencing was performed on seeds treated with different temperature and humidity. A total of 881 unigenes related to nutrition conversion were identified. The correlations between nutrient content and gene expression suggested that sucrose phosphate synthase (SPS), dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex (DLST), glycerol-3-phosphate acyltransferase (GPAT) and Pyruvate kinase (PK) may play key roles in nutrition conversion. Transient over-expression of TgDLST, TgPK and TgGPAT in tobacco leaves promoted nutritional conversion. Moreover, enzyme activity analysis indicated that diacylglycerol acyltransferase (DGAT) and pyruvate dehydrogenase (PDH) activities may also accelerate the nutritional conversion. This study uncovers the molecular basis of nutrition conversion in T. grandis seeds, which critical for shortening the time of nutrition conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.132454DOI Listing

Publication Analysis

Top Keywords

nutrition conversion
28
conversion
9
torreya grandis
8
molecular basis
8
basis nutrition
8
nutritional conversion
8
nutrition
7
identification key
4
key genes
4
genes enzymes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!