A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extending galactose-oxidation pathway of Pseudomonas putida for utilization of galactose-rich red macroalgae as sustainable feedstock. | LitMetric

Extending galactose-oxidation pathway of Pseudomonas putida for utilization of galactose-rich red macroalgae as sustainable feedstock.

J Biotechnol

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.

Published: March 2022

Marine red macroalgae has attracted researchers' consideration as a non-lignocellulosic feedstock for microbial growth to produce biofuels and biochemical products. Gelidium amansii is representative galactose-rich red macroalgae biomass but studies on its galactose utilization are currently scarce. Herein, we engineered Pseudomonas putida KT2440 as a functional chassis for assimilation of galactose in addition to glucose in G. amansii hydrolysate. P. putida KT2440 was confirmed owning high ability to oxidize galactose to galactonate by glucose dehydrogenase. Thereafter galactose-oxidation pathway was extended by introducing galactonate transport and metabolism modules from Pseudomonas rhodesiae NL2019. The recombinant strains NL910 and NL911 were able to grow on galactose with high cell densities and growth rates, and simultaneously upgrade all red macroalgae streams, which is essential to develop a sustainable and cost-effective bioprocess for valorization of red macroalgae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2022.02.009DOI Listing

Publication Analysis

Top Keywords

red macroalgae
20
galactose-oxidation pathway
8
pseudomonas putida
8
galactose-rich red
8
putida kt2440
8
red
5
macroalgae
5
extending galactose-oxidation
4
pathway pseudomonas
4
putida utilization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!