In this work, the protective effect of apple polyphenol extract (APE) on hepatic steatosis was investigated. Thirty-two C57BL/6J mice were assigned randomly to control group, hepatic steatosis group, lovastatin group, and APE group. After 8 weeks of intervention, APE supplementation markedly decreased the body weight gain, liver weight, liver index, epididymal adipose weight, epididymal adipose index, serum, and hepatic lipid levels. Hematoxylin and eosin staining revealed that APE supplementation alleviated histopathological changes of hepatic steatosis. Western blot revealed that APE downregulated the protein levels of GRP78, IRE1α, p-IRE1α, XBP1, PERK, p-PERK, p-eIF2α, ATF6, PPAR-γ, SREBP-1c, FAS, and ACC1. In conclusion, this study found that APE inhibited IRE1α-XBP1, PERK-eIF2α, and ATF6 signaling pathways to alleviate endoplasmic reticulum stress, thereby improving HFD-induced hepatic steatosis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.1c07733DOI Listing

Publication Analysis

Top Keywords

hepatic steatosis
20
apple polyphenol
8
polyphenol extract
8
endoplasmic reticulum
8
reticulum stress
8
ape supplementation
8
epididymal adipose
8
revealed ape
8
hepatic
6
ape
6

Similar Publications

Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease worldwide, with no universally recognized effective treatments currently available. In recent years, ginseng and its principal active components, such as ginsenosides, have shown potential protective effects in the treatment of these liver diseases. In NAFLD, studies have demonstrated that ginseng can improve hepatic lipid metabolism, reduce inflammatory responses, and inhibit oxidative stress and fibrosis, thereby attenuating the progression of NAFLD.

View Article and Find Full Text PDF

Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.

View Article and Find Full Text PDF

Background/objectives: Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high fat (HF) fed LFABP knockout (LFABP ) mice developed higher fat mass than their wild-type (WT) counterparts but displayed a metabolically healthy obese (MHO) phenotype with normoglycemia, normoinsulinemia, and reduced hepatic steatosis compared with WT. LFABP is expressed in both liver and intestine, thus in the present study, LFABP conditional knockout (cKO) mice were generated to determine the contributions of LFABP specifically within the liver or the intestine to the whole body phenotype of the global knockout.

View Article and Find Full Text PDF

Flaxseed and olive oil effectively treat numerous diseases and health conditions, particularly metabolic disorders. Traditional medicine has used both oils for managing cardiovascular disease, diabetes, gastrointestinal dysfunctions, metabolic-dysfunction-associated fatty liver disease (MAFLD), obesity, and more. This review explores the bioactive and polyphenolic compounds in flaxseed and olive oils that provide anti-inflammatory, antioxidant, anti-microbial, hepatoprotective, cardioprotective, antidiabetic, and gastroprotective benefits.

View Article and Find Full Text PDF

While fructose is a key dietary component, concerns have been raised about its potential risks to the liver. This study aimed to assess quercetin's protective effects against fructose-induced mouse hepatic steatosis. Thirty-two male C57BL/6J mice were randomly allocated into four groups: control, high fructose diet (HFrD), HFrD supplemented with low-dose quercetin (HFrD+LQ), and HFrD supplemented with high-dose quercetin (HFrD+HQ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!