From atomic force microscopy (AFM) experiments, we report a new phenomenon in which the dissolution rate of fused silica is enhanced by more than 5 orders of magnitude by simply pressing a second, dissimilar surface against it and oscillating the contact pressure at low kHz frequencies in deionized water. The silica dissolution rate enhancement was found to exhibit a strong dependence on the pressure oscillation frequency consistent with a resonance effect. This harmonic enhancement of the silica dissolution rate was only observed at asymmetric material interfaces (e.g., diamond on silica) with no evidence of dissolution rate enhancement observed at symmetric material interfaces (i.e., silica on silica) within the experimental time scales. The apparent requirement for interface dissimilarity, the results of analogous experiments performed in anhydrous dodecane, and the observation that the silica "dissolution pits" continue to grow in size under contact stresses well below the silica yield stress refute a mechanical deformation or chemo-mechanical origin to the observed phenomenon. Instead, the silica dissolution rate enhancement exhibits characteristics consistent with a previously described 'electrochemical pressure solution' mechanism, albeit, with greatly amplified kinetics. Using a framework of electrochemical pressure solution, an electrochemical model of mineral dissolution, and a recently proposed "surface resonance" theory, we present an electro-chemo-mechanical mechanism that explains how oscillating the contact pressure between dissimilar surfaces in water can amplify surface dissolution rates by many orders of magnitude. This reaction rate enhancement mechanism has implications not only for dissolution but also for potentially other reactions occurring at the solid-liquid interface, e.g. catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c11545DOI Listing

Publication Analysis

Top Keywords

dissolution rate
24
rate enhancement
20
silica dissolution
16
silica
10
dissolution
9
electrochemical pressure
8
orders magnitude
8
oscillating contact
8
contact pressure
8
material interfaces
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!