Dissimilatory nitrate reduction to ammonium (DNRA), the nearly forgotten process in the terrestrial nitrogen (N) cycle, can conserve N by converting the mobile nitrate into non-mobile ammonium avoiding nitrate losses via denitrification, leaching, and runoff. However, global patterns and controlling factors of soil DNRA are still only rudimentarily known. By a meta-analysis of 231 observations from 85 published studies across terrestrial ecosystems, we find a global mean DNRA rate of 0.31 ± 0.05 mg N kg day, being significantly greater in paddy soils (1.30 ± 0.59) than in forests (0.24 ± 0.03), grasslands (0.52 ± 0.15), and unfertilized croplands (0.18 ± 0.04). Soil DNRA was significantly enhanced at higher altitude and lower latitude. Soil DNRA was positively correlated with precipitation, temperature, pH, soil total carbon, and soil total N. Precipitation was the main stimulator for soil DNRA. Total carbon and pH were also important factors, but their effects were ecosystem-specific as total carbon stimulates DNRA in forest soils, whereas pH stimulates DNRA in unfertilized croplands and paddy soils. Higher temperatures inhibit soil DNRA via decreasing total carbon. Moreover, nitrous oxide (NO) emissions were negatively related to soil DNRA. Thus, future changes in climate and land-use may interact with management practices that alter soil substrate availability and/or soil pH to enhance soil DNRA with positive effects on N conservation and lower NO emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.1c07997 | DOI Listing |
Environ Sci Technol
January 2025
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China.
Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of , a potential As hyperaccumulator. was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment.
View Article and Find Full Text PDFGenes (Basel)
November 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
Chemical fumigation can effectively inhibit the occurrence of soil-borne diseases; however, this approach can negatively affect the structure of the soil microbial community. The combination of soil fumigant and organic fertilizer application thus represents a widely adopted strategy in agricultural practice. Traditional Chinese medicine residue (TCMR) is a high-quality organic fertilizer; however, the impact of post-fumigation TCMR application on keystone taxa and their functional traits remains uncertain.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
mBio
December 2024
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
Dissimilatory nitrate reduction to ammonium (DNRA), driven by nitrate-ammonifying bacteria, is an increasingly appreciated nitrogen-cycling pathway in terrestrial ecosystems. This process reportedly generates nitrous oxide (NO), a strong greenhouse gas with ozone-depleting effects. However, it remains poorly understood how NO is produced by environmental nitrate-ammonifiers and how to identify DNRA-derived NO.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China. Electronic address:
Nitrogen cycling is one of the most important biogeochemical processes on Earth, and denitrification, anammox and DNRA processes are important nitrogen cycling processes in estuarine ecosystems. However, due to the large input of anthropogenic nitrogen sources, a large number of environmental problems have now occurred in the estuary. But the global patterns and controlling factors of denitrification, anammox and DNRA rates in wetland marine ecosystems are not yet known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!