A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrasonic Formation of FeO-Reduced Graphene Oxide-Salicylic Acid Nanoparticles with Switchable Antioxidant Function. | LitMetric

We demonstrate a single-step ultrasonic in situ complexation of salicylic acid during the growth of FeO-reduced graphene oxide nanoparticles (∼10 nm) to improve the antioxidant and antiproliferative effects of pristine drug molecules. These nanoparticles have a precisely defined electronic molecular structure with salicylic acid ligands specifically complexed to Fe(III)/Fe(II) sites, four orders of magnitude larger electric surface potential, and enzymatic activity modulated by ascorbic acid molecules. The diminishing efficiency of hydroxyl radicals by FeO-rGO-SA nanoparticles is tenfold higher than that by pristine salicylic acid in the electro-Fenton process. The H production of these nanoparticles can be switched by the interaction with ascorbic acid ligands and cause the redox deactivation of iron or enhanced antioxidation, where rGO plays an important role in enhanced charge transfer catalysis. FeO-rGO-SA nanoparticles are nontoxic to erythrocytes, i.e., human peripheral blood mononuclear cells, but surpassingly inhibit the growth of three cancer cell lines, HeLa, HepG2, and HT29, with respect to pristine salicylic acid molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.1c01603DOI Listing

Publication Analysis

Top Keywords

salicylic acid
16
feo-reduced graphene
8
acid ligands
8
ascorbic acid
8
acid molecules
8
feo-rgo-sa nanoparticles
8
pristine salicylic
8
acid
7
nanoparticles
6
ultrasonic formation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!