Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We demonstrate a single-step ultrasonic in situ complexation of salicylic acid during the growth of FeO-reduced graphene oxide nanoparticles (∼10 nm) to improve the antioxidant and antiproliferative effects of pristine drug molecules. These nanoparticles have a precisely defined electronic molecular structure with salicylic acid ligands specifically complexed to Fe(III)/Fe(II) sites, four orders of magnitude larger electric surface potential, and enzymatic activity modulated by ascorbic acid molecules. The diminishing efficiency of hydroxyl radicals by FeO-rGO-SA nanoparticles is tenfold higher than that by pristine salicylic acid in the electro-Fenton process. The H production of these nanoparticles can be switched by the interaction with ascorbic acid ligands and cause the redox deactivation of iron or enhanced antioxidation, where rGO plays an important role in enhanced charge transfer catalysis. FeO-rGO-SA nanoparticles are nontoxic to erythrocytes, i.e., human peripheral blood mononuclear cells, but surpassingly inhibit the growth of three cancer cell lines, HeLa, HepG2, and HT29, with respect to pristine salicylic acid molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.1c01603 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!