Soft conductive elastomers with low hysteresis over a wide range of stretchability are desirable in various applications. Such applications include soft sensors with a long measurement range, motion recognition, and electronic skin, just to name a few. Even though the measurement capability of the sensors based on soft materials has been greatly improved compared to the traditional ones in recent years, hysteresis in the loading and unloading states has limited the applications of these sensors, thereby negatively affecting their accuracy and reliability. In this work, conductive elastomers with near-zero hysteresis have been formulated and fabricated using 3D printing. These elastomers are made by combining highly stretchable dielectric elastomer formulations with a polar hydrophobic ionic liquid and polymerizing under ultraviolet light. High-performance piezoresistive sensors have been fabricated and characterized, with a 10-fold stretchability and low hysteresis (1.2%) over long-term stability (more than 10 000 cycles under cyclic stress) with a 20 ms response time. Additionally, the current elastomers displayed fast mechanical and electrical self-healing properties. Using 3D printing in conjunction with some of our structural innovations, we have fabricated smart gloves to show this material's wide range of applications in soft robots, motion detection, wearable devices, and medical care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c24784 | DOI Listing |
Polymers (Basel)
December 2024
College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
Rubber is widely used in situations involving cyclic loads, and the influence of temperature on rubber properties is particularly pronounced under cyclic loading. In this study, mechanical property tests and crack propagation tests of carbon black-filled hydrogenated nitrile butadiene rubber were conducted at four different operating temperatures. Based on the results of the crack propagation tests, the temperature-dependent characteristics of the Paris-Erdogan parameters and strain energy density were clarified.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
C & S Partner, Hanam Technovalley U1 Center, Hanam-si 12982, Republic of Korea.
A fully bio-based polyester polyol based on isosorbide (ISB) and dimer fatty acid (DA) was synthesized through esterification. An ISB-based polyester polyol (DIS) was developed to synthesize a bio-based polyurethane elastomer (PUE) with enhanced mechanical and self-healing properties. The rigid bicyclic structure of ISB improved tensile properties, while the urethane bonds formed between the hydroxyl groups in ISB and isocyanate exhibited reversible characteristics at elevated temperatures, significantly enhancing the self-healing performance of DIS-based PUE compared to the control PUE (self-healing efficiency: 98% for DIS-based PUE vs.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China.
In recent years, there have been many studies focused on improving the performance of active materials; however, applying these materials to active machines still presents significant challenges. In this study, we introduce a light-powered self-translation system for an asymmetric friction slider using a liquid crystal elastomer (LCE) string oscillator. The self-translation system was composed of a hollow slide, two LCE fibers, and a mass ball.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-Gu, Seoul 06978, Republic of Korea.
Gallium-based liquid metals remain in a liquid state at room temperature and exhibit excellent electrical and thermal conductivities, low viscosity, and low toxicity, making them ideal for creating highly stretchable and conductive composites suitable for flexible electronic devices. Despite these benefits, conventional single-layer liquid metal composites face challenges, such as liquid metal leakage during deformation (e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China.
Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!