A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study of LiCoO/LiLaZrO:Ta Interface Degradation in All-Solid-State Lithium Batteries. | LitMetric

The garnet-type LiLaZrO (LLZO) ceramic solid electrolyte combines high Li-ion conductivity at room temperature with high chemical stability. Several all-solid-state Li batteries featuring the LLZO electrolyte and the LiCoO (LCO) or LiCoO-LLZO composite cathode were demonstrated. However, all batteries exhibit rapid capacity fading during cycling, which is often attributed to the formation of cracks due to volume expansion and the contraction of LCO. Excluding the possibility of mechanical failure due to crack formation between the LiCoO/LLZO interface, a detailed investigation of the LiCoO/LLZO interface before and after cycling clearly demonstrated cation diffusion between LiCoO and the LLZO. This electrochemically driven cation diffusion during cycling causes the formation of an amorphous secondary phase interlayer with high impedance, leading to the observed capacity fading. Furthermore, thermodynamic analysis using density functional theory confirms the possibility of low- or non-conducting secondary phases forming during cycling and offers an additional explanation for the observed capacity fading. Understanding the presented degradation paves the way to increase the cycling stability of garnet-based all-solid-state Li batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c22246DOI Listing

Publication Analysis

Top Keywords

capacity fading
12
all-solid-state batteries
8
licoo/llzo interface
8
cation diffusion
8
observed capacity
8
cycling
5
study licoo/lilazrota
4
licoo/lilazrota interface
4
interface degradation
4
degradation all-solid-state
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!