Intracerebral hemorrhage is a leading cause of morbidity and mortality worldwide. To date, there is no specific treatment that clearly provides a benefit in functional outcome or mortality. Surgical treatment for hematoma evacuation has not yet shown clear benefit over medical management despite promising preclinical studies. Minimally invasive treatment options for hematoma evacuation are under investigation but remain in early-stage clinical trials. Robotics has the potential to improve treatment. In this paper, we review intracerebral hemorrhage pathology, currently available treatments, and potential robotic approaches to date. We also discuss the future role of robotics in stroke treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-022-02934-z | DOI Listing |
J Neurosurg Case Lessons
January 2025
The Trauma and Neuroscience Institutes, St. John's Hospital and Medical Center, Tulsa, Oklahoma.
Background: Direct carotid-cavernous fistulas (CCFs) are relatively rare but dangerous complications of penetrating traumatic brain injury or maxillofacial trauma. A variety of clinical signs have been described, including ophthalmological and neurological ones. In some cases, severely altered cerebral blood flow can present as massive life-threatening bleeding through the nose, subarachnoid hemorrhage, and/or intraparenchymal hemorrhage.
View Article and Find Full Text PDFNeuroreport
January 2025
Department of Neurosurgery.
Nowadays, intracerebral hemorrhage (ICH) is the main cause of death and disability, and motor impairment is a common sequel to ICH. Electroacupuncture (EA) has been widely used for functional recovery after ICH. However, its role and associated regulatory mechanisms in rehabilitation after ICH remain poorly understood.
View Article and Find Full Text PDFBackground: There is a well-established relationship between liver conditions and cardiovascular diseases. However, uncertainty persists regarding the contribution of liver fibrosis to major stroke types including ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage at the population level.
Methods: In this large prospective cohort study, participants without previous stroke or coronary heart disease at baseline from the UK Biobank were included.
J Extracell Vesicles
January 2025
Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Microglial phagocytosis of haematomas is crucial for neural functional recovery following intracerebral haemorrhage (ICH), a process regulated by various factors from within and outside the central nervous system (CNS). Extracellular vesicles (EVs), significant mediators of intercellular communication, have been demonstrated to play a pivotal role in the pathogenesis and progression of CNS diseases. However, the regulatory role of endogenous EVs on the phagocytic capacity of microglia post-ICH remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!