In this work, we investigated the in vitro and in vivo functions of bisphosphonate of zoledronate (Zd) in hypoxia/reoxygenation (H/R) injured human embryonic stem cell-derived cardiomyocytes (hES-CMs). In the in vitro setting, the effects of Zd on hES-CM survival and differentiation were examined. We found that low and medium concentrations (<2 µm) of Zd did not induce cell death of hES-CMs. 0.5 µm Zd protected H/R-induced hES-CM apoptosis but did not affect key differentiation proteins, including hcTnl, PECM-1 Cnx43 and Pan-Cadherin. In addition, Zd-induced TrkA/B phosphorylation and promoted VEGF to counter the apoptotic effect of H/R injury. In the in vivo animal model of myocardial infarction, Zd treatment promoted the survival of hES-CMs by inducing PECAM1 and hcTnl. Thus, we concluded that Zd protected H/R-induced hES-CM apoptosis in vitro and promoted hES-CM survival in vivo. These data may facilitate the development of human embryonic stem cells into clinical applications for patients with ischemic heart disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-021-01031-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!