Most tree species native to arid and semiarid ecosystems produce seeds with physical dormancy, which have impermeable coats that protect them from desiccation and prevent germination when the environmental conditions are unfavorable for seedling establishment. This dormancy mechanism may confer some degree of tolerance to seeds facing warmer and drier conditions, as those expected in several regions of the world because of climate change. Scarification of these seeds (removal of protective coats) is required for stimulating germination and seedling development. However, as scarification exposes seeds to the external environmental conditions, it can promote desiccation and viability loss in the future. To test these hypotheses, we performed field experiments and sowed scarified and unscarified seeds of a pioneer tree native to semiarid ecosystems of Mesoamerica (Vachellia pennatula) under the current climate and simulated climate change conditions. The experiments were conducted at abandoned fields using open-top chambers to increase temperature and rainout shelters to reduce rainfall. We measured microenvironmental conditions within the experimental plots and monitored seedling emergence and survival during a year. Air temperature and rainfall in climate change simulations approached the values expected for the period 2041-2080. Seedling emergence rates under these climatic conditions were lower than under the current climate. Nevertheless, emergence rates in climate change simulations were even lower for scarified than for unscarified seeds, while the converse occurred under the current climate. On the other hand, although survival rates in climate change simulations were lower than under the current climate, no effects of the scarification treatment were found. In this way, our study suggests that climate change will impair the recruitment of pioneer trees in semiarid environments, even if they produce seeds with physical dormancy, but also indicates that these negative effects will be stronger if seeds are scarified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10265-022-01383-y | DOI Listing |
Mol Ecol
January 2025
ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.
Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.
View Article and Find Full Text PDFAnim Front
December 2024
Livestock Nutrient Management Research Unit, USDA-ARS, Bushland, TX 79012, USA.
Natl Sci Rev
January 2025
Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China.
The weakening and poleward expansion of the Hadley circulation (HC) are considered robust responses of atmospheric meridional circulation to anthropogenic warming. Climate impacts arising from these changes enhance drought conditions and reduce food production in the affected regions. Therefore, understanding the mechanisms of HC changes is critical to anticipating the resultant climate risks.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Laboratório de Ecologia de Sedimentos, Instituto de Biologia, Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil.
Submerged or partially floating seagrasses in marine or brackish waters form productive seagrass beds, feeding grounds for a rich and varied associated biota, play key ecological roles in mitigating climate change and provide ecosystem services for humanity. The objective of this study was to perform a temporal quali- and quantitative analysis on the scientific production on seagrasses in the Atlantic Ocean during last 64 years (1960 to 2024) through defined workflow by scientometric analysis on Scopus database. Publications in this database date back to 1969, comprising a total of 3.
View Article and Find Full Text PDFFront Public Health
December 2024
Ateneo School of Medicine and Public Health, Pasig, Metro Manila, Philippines.
Introduction: As climate change advances, the looming threat of dengue fever, intricately tied to rising temperatures, intensifies, posing a substantial and enduring public health challenge in the Philippines. This study aims to investigate the historical and projected excess dengue disease burden attributable to temperature to help inform climate change policies, and guide resource allocation for strategic climate change and dengue disease interventions.
Methods: The study utilized established temperature-dengue risk functions to estimate the historical dengue burden attributable to increased temperatures.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!