Lower ethylene production in sugarcane results in plants with higher stature, expression of growth-promoting genes, higher photosynthetic rate, and increased antioxidant compounds. The hormone ethylene is involved in critical processes in sugarcane, such as the growth and accumulation of sucrose. The lack of mutants for ethylene biosynthesis or signaling genes makes it difficult to understand the role of this phytohormone throughout sugarcane development. This study aimed to evaluate the physiology and development of sugarcane plants with low ethylene production. To achieve this goal, we used RNA interference to silence three genes, ScACS1, ScACS2, and ScACS3, encoding 1-aminocyclopropane-1-carboxylic acid synthases (ACS), responsible for a limiting step of the ethylene biosynthesis pathway. Sugarcane plants with reduced ethylene levels presented increased growth, faster germination of lateral gems, and activation of non-enzymatic antioxidant mechanisms. We observed an augmentation in the expression of ScACO5, which encodes the final enzyme regulating ethylene biosynthesis, and ScERF1, encoding a transcription factor, linked to the ethylene response. The increase in plant height was correlated with higher expression of ScPIF3, ScPIF4, and ScPIF5, which encode for transcription factors related to growth induction. Interestingly, there was also an increase in the expression of the ScGAI gene, which encodes a DELLA protein, a growth repressor. The final content of sucrose in the stems was not affected by the low levels of ethylene, although the rate of CO assimilation was reduced. This study reports for the first time the impacts of low endogenous production of ethylene in sugarcane and provides helpful insights on the molecular mechanisms behind ethylene responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-022-02832-7 | DOI Listing |
FEBS J
January 2025
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
1-Aminocyclopropane-1-carboxylate synthase (ACCS) catalyzes the conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylate (ACC), a rate-limiting step in ethylene biosynthesis. A gene encoding a putative ACCS protein was identified in the human genome two decades ago. It has been shown to not exhibit any canonical ACC synthase activity and its true function remains obscure.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
The cysteine/arginine (Cys/Arg) branch of the N-degron pathway controls the stability of certain proteins with methionine (Met)-Cys N-termini, initiated by Met cleavage and Cys oxidation. In seeding plants, target proteins include the Group VII Ethylene Response Factors, which initiate adaptive responses to low oxygen (hypoxic) stress, as well as Vernalization 2 (VRN2) and Little Zipper 2 (ZPR2), which are involved in responses to endogenous developmental hypoxia. It is essential that these target proteins are only degraded by the N-degron pathway under the appropriate physiological conditions.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.
View Article and Find Full Text PDFPlant Cell
December 2024
Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!