The interaction between plants and pathogenic microorganisms is a multifaceted process mediated by both plant- and pathogen-derived molecules, including proteins, metabolites, and lipids. Large-scale proteome analysis can quantify the dynamics of proteins, biological pathways, and posttranslational modifications (PTMs) involved in the plant-pathogen interaction. Mass spectrometry (MS)-based proteomics has become the preferred method for characterizing proteins at the proteome and sub-proteome (e.g., the phosphoproteome) levels. MS-based proteomics can reveal changes in the quantitative state of a proteome and provide a foundation for understanding the mechanisms involved in plant-pathogen interactions. This review is intended as a primer for biologists that may be unfamiliar with the diverse range of methodology for MS-based shotgun proteomics, with a focus on techniques that have been used to investigate plant-pathogen interactions. We provide a summary of the essential steps required for shotgun proteomic studies of plants, pathogens and plant-pathogen interactions, including methods for protein digestion, identification, separation, and quantification. Finally, we discuss how protein PTMs may directly participate in the interaction between a pathogen and its host plant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883913PMC
http://dx.doi.org/10.3390/proteomes10010005DOI Listing

Publication Analysis

Top Keywords

plant-pathogen interactions
16
shotgun proteomics
8
plants pathogens
8
pathogens plant-pathogen
8
involved plant-pathogen
8
ms-based proteomics
8
plant-pathogen
5
proteomics powerful
4
powerful tool
4
tool study
4

Similar Publications

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity.

J Zhejiang Univ Sci B

May 2024

State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.

Crop production currently relies on the widespread use of agrochemicals to ensure food security. This practice is considered unsustainable, yet has no viable alternative at present. The plant microbiota can fulfil various functions for its host, some of which could be the basis for developing sustainable protection and fertilization strategies for plants without relying on chemicals.

View Article and Find Full Text PDF

Background: is the causal agent of Fusarium Head Blight (FHB) on wheat and produces deoxynivalenol (DON), known to cause extreme human and animal toxicosis. This species' genome contains genes involved in plant-pathogen interactions and regulated by chromatin modifications. Moreover, histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), have been employed to study gene transcription regulation because they can convert the structure of chromatin.

View Article and Find Full Text PDF

Wolbachia infection modifies phloem feeding behavior but not plant virus transmission by a hemipteran host.

J Insect Physiol

December 2024

USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA, 98951, USA.

Wolbachia-infected and uninfected subpopulations of beet leafhoppers, Circulifer tenellus (Baker) (Hemiptera: Cicadellidae), co-occur in the Columbia Basin region of Washington and Oregon. While facultative endosymbionts such as Hamiltonella defensa have demonstrably altered feeding/probing behavior in hemipteran hosts, the behavioral phenotypes conferred by Wolbachia to its insect hosts, including feeding/probing, are largely understudied. We studied the feeding/probing behavior of beet leafhoppers with and without Wolbachia using electropenetrography, along with corresponding inoculation rates of beet curly top virus, a phloem-limited plant pathogen vectored by beet leafhoppers.

View Article and Find Full Text PDF

Biotic stresses such as fungal pathogens significantly affect global crop yields. Understanding of the plant-pathogen interactions during root infection, especially in monocot crops, remains limited compared to fungal colonizations of dicots. The infection process of several cereal crop root-damaging fungi and oomycetes is highly similar to root infections by the pathogen model Phytophthora palmivora.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!